Involved in Friction Welding

2021 ◽  
Vol 90 (8) ◽  
pp. 548-550
Author(s):  
Kazuyoshi KATOH
Keyword(s):  
2010 ◽  
Vol 43 (2) ◽  
pp. 25
Author(s):  
Ishtiaq Ahmed Khan ◽  
Ravinder Reddy ◽  
ACS Kumar ◽  
Yatin Tambe

2020 ◽  
Vol 277 ◽  
pp. 128329 ◽  
Author(s):  
Y.H. Liu ◽  
Z.B. Zhao ◽  
C.B. Zhang ◽  
Q.J. Wang ◽  
H. Sun ◽  
...  

2017 ◽  
Vol 48 (7) ◽  
pp. 3328-3342 ◽  
Author(s):  
O. N. Senkov ◽  
D. W. Mahaffey ◽  
D. J. Tung ◽  
W. Zhang ◽  
S. L. Semiatin

Author(s):  
Yu Sik Kong ◽  
Muralimohan Cheepu ◽  
Jin-Kyung Lee

Friction welding was chosen for its versatility in the joining of dissimilar materials with high quality. The aim of this study is to determine the optimal welding conditions for attaining quality joints by using online monitoring of acoustic emission system signals. During friction welding, the formation of cracks, defects, or any abnormalities in the joining process which have a detrimental effect on the joints quality was identified. The most widely used materials in the aerospace industry—Inconel 718 and molybdenum steel—were joined by friction welding. The precision of the joints, internal defects, and quality are major concerns for aerospace parts. The results of the present research determined the optimal welding conditions for high tensile strength by nondestructively inducing acoustic emission signals. During friction time and upset time periods, the typical waveforms and frequency spectrum of the acoustic emission signals were recorded, and their energy level, average frequency, cumulative count, and amplitude were analyzed. Both cumulative count and amplitude were found to be useful parameters for deriving the optimal welding conditions. In the initial stage of friction welding, a very high voltage of continuous form was generated with frequency characteristics of 0.44 MHz and 0.54 MHz. The signals generated during the upset stage had a low voltage, but a very high frequency of 1.56 MHz and 1.74 MHz with a burst-type signal. The amplitude of the signal generated for the optimally welded joints was about 100 dB at the friction time and about 45 dB at the upset time.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1537
Author(s):  
Beata Skowrońska ◽  
Tomasz Chmielewski ◽  
Mariusz Kulczyk ◽  
Jacek Skiba ◽  
Sylwia Przybysz

The paper presents the microstructural investigation of a friction-welded joint made of 316L stainless steel with an ultrafine-grained structure obtained by hydrostatic extrusion (HE). Such a plastically deformed material is characterized by a metastable state of energy equilibrium, increasing, among others, its sensitivity to high temperatures. This feature makes it difficult to weld ultra-fine-grained metals without losing their high mechanical properties. The use of high-speed friction welding and a friction time of <1 s reduced the scale of the weakening of the friction joint in relation to result obtained in conventional rotary friction welding. The study of changes in the microstructure of individual zones of the friction joint was carried out on an optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and electron backscattered diffraction (EBSD) analysis system. The correlation between the microstructure and hardness of the friction joint is also presented. The heat released during the high-speed friction welding initiated the process of dynamic recrystallization (DRX) of single grains in the heat-affected zone (HAZ). The additional occurrence of strong plastic deformations (in HAZ) during flash formation and internal friction (in the friction weld and high-temperature HAZ) contributed to the formation of a highly deformed microstructure with numerous sub-grains. The zones with a microstructure other than the base material were characterized by lower hardness. Due to the complexity of the microstructure and its multifactorial impact on the properties of the friction-welded joint, strength should be the criterion for assessing the properties of the joint.


Sign in / Sign up

Export Citation Format

Share Document