Study of an Iterative Solution for Boltzmann Transport Equation and Calculation of Thermal Conductivity

2018 ◽  
Vol 777 ◽  
pp. 421-425 ◽  
Author(s):  
Chhengrot Sion ◽  
Chung Hao Hsu

Many methods have been developed to predict the thermal conductivity of the material. Heat transport is complex and it contains many unknown variables, which makes the thermal conductivity hard to define. The iterative solution of Boltzmann transport equation (BTE) can make the numerical calculation and the nanoscale study of heat transfer possible. Here, we review how to apply the iterative method to solve BTE and many linear systems. This method can compute a sequence of progressively accurate iteration to approximate the solution of BTE.

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 704 ◽  
Author(s):  
Fernan Saiz ◽  
Jesus Carrete ◽  
Riccardo Rurali

We study the thermal conductivity of monolayer, bilayer, and bulk titanium trisulphide (TiS 3 ) by means of an iterative solution of the Boltzmann transport equation based on ab-initio force constants. Our results show that the thermal conductivity of these layers is anisotropic and highlight the importance of enforcing the fundamental symmetries in order to accurately describe the quadratic dispersion of the flexural phonon branch near the center of the Brillouin zone.


1997 ◽  
Vol 478 ◽  
Author(s):  
G. Chen ◽  
M. Neagu ◽  
T. Borca-Tasciuc

AbstractUnderstanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and devices based on quantum structures. This work reports progress on the modeling of thermal conductivity of superlattice structures. Results from the models established based on the Boltzmann transport equation could explain existing experimental results on the thermal conductivity of semiconductor superlattices in both in plane and cross-plane directions. These results suggest the possibility of engineering the interfaces to further reduce thermal conductivity of superlattice structures.


1998 ◽  
Vol 545 ◽  
Author(s):  
G. Chen ◽  
S. G. Volz ◽  
T. Borca-Tasciuc ◽  
T. Zeng ◽  
D. Song ◽  
...  

AbstractUnderstanding phonon heat conduction mechanisms in low-dimensional structures is of critical importance for low-dimensional thermoelectricity. In this paper, we discuss heat conduction mechanisms in two-dimensional (2D) and one-dimensional (1D) structures. Models based on both the phonon wave picture and particle picture are developed for heat conduction in 2D superlattices. The phonon wave model, based on the acoustic wave equations, includes the effects of phonon interference and tunneling, while the particle model, based on the Boltzmann transport equation, treats the internal as well interface scattering of phonons. For 1D systems, both the Boltzmann transport equation and molecular dynamics simulation approaches are employed. Comparing the modeling results with experimental data suggest that the interface scattering of phonons plays a crucial role in the thermal conductivity of low-dimensional structures. We also discuss the minimum thermal conductivity of low-dimensional structures based on a generalized thermal conductivity integral, and suggest that the minimum thermal conductivities of low-dimensional systems may differ from those of their corresponding bulk materials. The discussion leads to alternative ways to reduce thermal conductivity based on the propagating phonon modes.


2019 ◽  
Vol 21 (28) ◽  
pp. 15647-15655 ◽  
Author(s):  
Zhehao Sun ◽  
Kunpeng Yuan ◽  
Xiaoliang Zhang ◽  
Guangzhao Qin ◽  
Xiaojing Gong ◽  
...  

In this study, strain modulation of the lattice thermal conductivity of monolayer and bilayer penta-graphene (PG) at room temperature was investigated using first-principles calculations combined with the phonon Boltzmann transport equation.


Sign in / Sign up

Export Citation Format

Share Document