scholarly journals Characteristics of relatively long-period ground motions estimated from oil-sloshing in huge tanks and earthquake records.

1985 ◽  
pp. 471-480
Author(s):  
Yoshikazu YAMADA ◽  
Hirokazu IEMURA ◽  
Shigeru NODA ◽  
Saburo SHIMADA
2007 ◽  
Vol 23 (2) ◽  
pp. 357-392 ◽  
Author(s):  
Nicolas Luco ◽  
C. Allin Cornell

Introduced in this paper are several alternative ground-motion intensity measures ( IMs) that are intended for use in assessing the seismic performance of a structure at a site susceptible to near-source and/or ordinary ground motions. A comparison of such IMs is facilitated by defining the “efficiency” and “sufficiency” of an IM, both of which are criteria necessary for ensuring the accuracy of the structural performance assessment. The efficiency and sufficiency of each alternative IM, which are quantified via (i) nonlinear dynamic analyses of the structure under a suite of earthquake records and (ii) linear regression analysis, are demonstrated for the drift response of three different moderate- to long-period buildings subjected to suites of ordinary and of near-source earthquake records. One of the alternative IMs in particular is found to be relatively efficient and sufficient for the range of buildings considered and for both the near-source and ordinary ground motions.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
F. G. Golzar ◽  
R. Shabani ◽  
S. Tariverdilo ◽  
G. Rezazadeh

Using extended Hamiltonian variational principle, the governing equations for sloshing response of floating roofed storage tanks are derived. The response of the floating roofed storage tanks is evaluated for different types of ground motions, including near-source and long-period far-field records. Besides comparing the response of the roofed and unroofed tanks, the effect of different ground motions on the wave elevation, lateral forces, and overturning moments induced on the tank is investigated. It is concluded that the dimensionless sloshing heights for the roofed tanks are solely a function of their first natural period. Also it is shown that while long-period far-field ground motions control the free board height, near-source records give higher values for lateral forces and overturning moments induced on the tank. This means that same design spectrum could not be used to evaluate the free board and lateral forces in the seismic design of storage tanks. Finally, two cases are studied to reveal the stress patterns caused by different earthquakes.


1994 ◽  
Vol 84 (6) ◽  
pp. 1831-1841 ◽  
Author(s):  
Hiroaki Yamanaka ◽  
Masayuki Takemura ◽  
Hiroshi Ishida ◽  
Masanori Niwa

Abstract Applicability of long-period microtremors in inferring subsurface structure is examined using measurements of microtremors in the northwestern part of the Kanto Plain in Japan. Short-term continuous measurements of long-period microtremors at both sediment and basement sites were taken. A spectral peak at a period of 4 to 5 sec is stable with time, while peaks at periods less than 2 sec are time variant, suggesting a variation of microtremor sources. However, it was found that the spectral ratio between vertical and horizontal microtremors (ellipticity) at each site is stable with time. Good agreement was found between ellipticities of microtremors at the sediment site and those computed for Rayleigh waves in which the structure of the sediments beneath the site was taken into account. We also found that the ellipticities of Rayleigh waves in earthquake ground motions were consistent with those of the microtremors. These comparisons provide strong evidence that long-period microtremors in the area studied consist mainly of Rayleigh waves. The ellipticity of microtremors was investigated by observing microtremors at temporary observation sites in the Kanto Plain where the sediment thickness varied from 0 to 1 km. The subsurface structures were deduced by trial-and-error fitting of observed ellipticities with theoretical ellipticities that were calculated assuming Rayleigh waves. These results show that ellipticity of long-period microtremors is effective for deducing structure from microtremor data at a single site.


Author(s):  
Amin Haghighat ◽  
Ashkan Sharifi

This paper evaluates the accuracy of the Modified Fish-Bone (MFB) model for estimating the maximum inter-story drift ratio of irregular moment resisting frame (MRF) structures. To make this model applicable to irregular MRF structures, some modifications are made to the MFB formula. In order to evaluate the accuracy of the MFB model, several irregular frames with different types of irregularities are considered when subjected to different ground motions with different intensities. A local and a global error measure are defined and they are calculated for different frame models subjected to different earthquake records. The effects of different irregularities, ductility demand and frame height on the accuracy of the MFB model are investigated. Based on the results obtained from this evaluation, two simple and effective approaches are suggested to improve the MFB models.


Sign in / Sign up

Export Citation Format

Share Document