scholarly journals An experimental study on thermal stress and thermal deformation of masive concrete.

1989 ◽  
pp. 121-130
Author(s):  
Masami ISHIKAWA ◽  
Tsuyoshi MAEDA ◽  
Tetsu NISHIOKA ◽  
Tada-aki TANABE
2002 ◽  
Vol 12 (4) ◽  
pp. 271-280 ◽  
Author(s):  
Feng Sun ◽  
Wenfeng Yu ◽  
Zuhai Cheng ◽  
Yaoning Zhang

Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 97
Author(s):  
Shengzhe Ji ◽  
Wenfa Huang ◽  
Tao Feng ◽  
Long Pan ◽  
Jiangfeng Wang ◽  
...  

In this paper, a model to predict the thermal effects in a flashlamp-pumped direct-liquid-cooled split-disk Nd:LuAG ceramic laser amplifier has been presented. In addition to pumping distribution, the model calculates thermal-induced wavefront aberration as a function of temperature, thermal stress and thermal deformation in the gain medium. Experimental measurements are carried out to assess the accuracy of the model. We expect that this study will assist in the design and optimization of high-energy lasers operated at repetition rate.


2014 ◽  
Vol 18 (5) ◽  
pp. 1607-1611 ◽  
Author(s):  
Zhi-Qiang Li ◽  
Wei-Dong Song ◽  
Hui-Ping Tang ◽  
Zhi-Hua Wang ◽  
Long-Mao Zhao

Temperature field and thermal deformation of sandwich panels with closed-cell aluminum alloy foam core and heat-protective layer, which are subjected to Gaussian laser beam intensively irradiating, are investigated numerically. In transient heat analysis models, the influence of thermal conductivity, specific heat, and thickness of heat-protective layer on the temperature rise of the sandwich panels is calculated. In stress analysis models, a sequence coupled numerical method is utilized to simulate the thermal stress and deformation of sandwich panels induced by thermal expansion. Simulation results indicate that the temperature at center of sandwich panel increases firstly and then drops gradually with the increase of thermal conductivity of heat-protective layer after laser irradiation, and the critical thermal conductivity is obtained, while it decreases with the increase of specific heat and thickness of heat-protective layer. The thermal stress verifies the ?Cyclo-hoop effect?, i. e. radial stress is compression stress in ?hot zone? and tension stress in ?cold zone?. The max thermal deformation of sandwich panels slightly increases with the increase of thickness of heat-protective layer for given specific heat and thermal conductivity.


2015 ◽  
Vol 35 (s1) ◽  
pp. s114008
Author(s):  
伍强 Wu Qiang ◽  
徐兰英 Xu Lanying ◽  
杨永强 Yang Yongqiang ◽  
孔春玉 Kong Chunyu

2017 ◽  
Vol 69 (6) ◽  
pp. 1049-1065 ◽  
Author(s):  
Zhe Liu ◽  
Wei Chen ◽  
Desheng Li ◽  
Wenjing Zhang

Purpose In high-speed processing, the influence on the machining accuracy of a machine tool is greatly caused by the thermal deformation of the motorized spindle; a further study on the thermal characteristics of the spindle is given in this paper. This study aims to reduce the thermal error and improve the performance of the machine tool by discussing the relationships between the temperature distributions and rotating accuracy caused by the thermal deformations of the spindle. Design/methodology/approach The paper opted for a method combining the theoretical analysis and the experimental study to study the thermal stability of the high-speed motorized spindle. First of all, a finite element model of the spindle was built with ANSYS, whereby temperature distributions and the thermal deformations were successively obtained at different speeds. And then, both the temperature field and the rotating accuracy of the motorized spindle were measured simultaneously by the thermal stability experiment. Finally, the experimental and theoretical results were compared and validated. Findings The thermal stability of the motorized spindle was studied in this paper, and some findings from the study were as follows: the spindle’s rotating accuracy maintained good in X direction but bad in Y and Z directions in terms of the deformations; the higher front-end temperature of the spindle which can significantly affect the rotating accuracy is needed to be controlled mainly; the recovery speed of the spindle deformation lagged behind the temperature’s fallback speed; the vibration graph about radial rotating sensitivity synthesized by X1 and X2 presented a trifoliate shape. Originality/value Based on a built test-bed which can synchronously measure the motorized spindle’s temperature distribution and rotating accuracy with five-point method, the coupling effects of the thermal deformation and temperature are embodied, and not only the vibration graph but also the thermal tilt angles can be gained. Therefore, considering the influence of the thermal deformation on the heat generated by the bearings, the paper fulfilled a study by which it was obtained that the front-end temperature of the spindle, which was higher and could significantly affect the rotating accuracy, needed to be controlled mainly.


2013 ◽  
Vol 278-280 ◽  
pp. 500-504
Author(s):  
Shu Jie Zhang ◽  
Yu Han Zhang

Cyclic changes of temperature in space may cause thermal deformation and thermal stresses at the silver welding spots on solar cells, which result in the solar array work abnormally. According to the temperature conditions in the thermal vacuum, the thermal stress and deformation at silver welding spot that between solar cell and inter-link chip were analyzed. The result shows that thermal cycling can make the sliver welding spot separated or contacted, which cause the solar array work wrong. The phenomenon of thermal vacuum reliability test was corresponding with these results. This paper could offer some references for the design and manufacture of solar array in the future.


Author(s):  
Cao Qing ◽  
Wu Yimin ◽  
Zhang Zhimin

In this paper, a heat conduction equation and a dynamic thermoelastic equation are briefly deduced and established based on Continuum Mechanics. First, an qualitative discussion is emphatically centered around the couple term and the dynamic term of the equation by means of the dimensional analysis and by considering the combination of the characteristics of the materials and of the thermal load effected on the nuclear power station pump under study. Second, formulations of the FEM for non-coupled heated equations and quasi-static thermoelastic equations are derived in this paper. Third, a half space thermal shock problem is used as a computational example in the highlighted research on the varying behavior of the dynamic thermal stress on the temperature slope. The conclusion of the paper provides reliable justification for applying the numerical method. Finally, the distribution and variety of the temperature field, the thermal stress field and the thermal deformation field at various transient moments on the pump are given.


Sign in / Sign up

Export Citation Format

Share Document