scholarly journals STUDY ON LONG-TERM WATER LEVEL FORECASTING FOR A RIVER IN INDONESIA CONSIDERING GLOBAL SEA SURFACE TEMPERATURE CHANGES

Author(s):  
Chiaki YOSHIDA ◽  
Makoto NAKATSUGAWA ◽  
Shun KUDO
Author(s):  
Zhenhao Xu ◽  
Fei Ji ◽  
Bo Liu ◽  
Taichen Feng ◽  
Yuan Gao ◽  
...  

2020 ◽  
Vol 33 (22) ◽  
pp. 9551-9565
Author(s):  
Haikun Zhao ◽  
Philp J. Klotzbach ◽  
Shaohua Chen

AbstractA conventional empirical orthogonal function (EOF) analysis is performed on summertime (May–October) western North Pacific (WNP) tropical cyclone (TC) track density anomalies during 1970–2012. The first leading EOF mode is characterized by a consistent spatial distribution across the WNP basin, which is closely related to an El Niño–Southern Oscillation (ENSO)-like pattern that prevails on both interannual and interdecadal time scales. The second EOF mode is represented by a tripole pattern with consistent changes in westward and recurving tracks but with an opposite change for west-northwestward TC tracks. This second EOF pattern is dominated by consistent global sea surface temperature anomaly (SSTA) patterns on interannual and interdecadal time scales, along with a long-term increasing global temperature trend. Observed WNP TC tracks have three distinct interdecadal epochs (1970–86, 1987–97, and 1998–2012) based on EOF analyses. The interdecadal change is largely determined by the changing impact of ENSO-like and consistent global SSTA patterns. When global SSTAs are cool (warm) during 1970–86 (1998–2012), these SSTAs exert a dominant impact and generate a tripole track pattern that is similar to the positive (negative) second EOF mode. In contrast, a predominately El Niño–like SSTA pattern during 1987–97 contributed to increasing TC occurrences across most of the WNP during this 11-yr period. These findings are consistent with long-term trends in TC tracks, with a tripole track pattern observed as global SSTs increase. This study reveals the potential large-scale physical mechanisms driving the changes of WNP TC tracks in association with climate change.


MAUSAM ◽  
2021 ◽  
Vol 47 (1) ◽  
pp. 47-52
Author(s):  
R. P. KANE

During the last 3 decades. the concentrations of greenhouse gases have increased monotonically. These are expected to produce warming in the troposphere and cooling at higher altitudes. Expetimental observations of various atmospheric parameters were examined. It was noted that not all parameters showed monotonic trends. In some cases, the trends before and after about 1970-75 were opposite or, the trends developed only after 1970-75. The reason for this transition needs to be explored. A possible cause could be a more rapid increase of CFC concentration in recent years. Also, effect of meteorological fators speciailly sea-surface temperature changes before and after 1975. could be a possible cause though this in turn may be relaled to increasing levels of greenhouse gases.  


2011 ◽  
Vol 24 (10) ◽  
pp. 2516-2522 ◽  
Author(s):  
Susana M. Barbosa

Abstract Long-term variability in global sea surface temperature (SST) is often quantified by the slope from a linear regression fit. Attention is then focused on assessing the statistical significance of the derived slope parameter, but the adequacy of the linear model itself, and the inherent assumption of a deterministic linear trend, is seldom tested. Here, a parametric statistical test is applied to test the hypothesis of a linear deterministic trend in global sea surface temperature. The results show that a linear slope is not adequate for describing the long-term variability of sea surface temperature over most of the earth’s surface. This does not mean that sea surface temperature is not increasing, rather that the increase should not be characterized by the slope from a linear fit. Therefore, describing the long-term variability of sea surface temperature by implicitly assuming a deterministic linear trend can give misleading results, particularly in terms of uncertainty, since the actual increase could be considerably larger than the one predicted by a deterministic linear model.


Ocean Science ◽  
2010 ◽  
Vol 6 (2) ◽  
pp. 491-501 ◽  
Author(s):  
G. I. Shapiro ◽  
D. L. Aleynik ◽  
L. D. Mee

Abstract. There is growing understanding that recent deterioration of the Black Sea ecosystem was partly due to changes in the marine physical environment. This study uses high resolution 0.25° climatology to analyze sea surface temperature variability over the 20th century in two contrasting regions of the sea. Results show that the deep Black Sea was cooling during the first three quarters of the century and was warming in the last 15–20 years; on aggregate there was a statistically significant cooling trend. The SST variability over the Western shelf was more volatile and it does not show statistically significant trends. The cooling of the deep Black Sea is at variance with the general trend in the North Atlantic and may be related to the decrease of westerly winds over the Black Sea, and a greater influence of the Siberian anticyclone. The timing of the changeover from cooling to warming coincides with the regime shift in the Black Sea ecosystem.


Sign in / Sign up

Export Citation Format

Share Document