scholarly journals TWO-LAYER SIMULTANEOUS CRACK EXTENSION MODEL FOR PULL-OUT BEHAVIOR OF POST-INSTALLED ANCHOR

Author(s):  
Muhammad SALEEM ◽  
Tatsuya TSUBAKI
1982 ◽  
Vol 49 (4) ◽  
pp. 768-772 ◽  
Author(s):  
G. R. Miller ◽  
L. M. Keer

The two-dimensional problem of a rigid, unbonded plate embedded in an infinite medium with cracks emanating from the edges of the plate is solved with loading conditions approximating those found in pull-out testing and other engineering applications. The analysis employs the Green’s function approach of Lo, which leads to a singular integral equation that is solved numerically. Stress intensity factors are presented for several combinations of load geometry, crack length, and crack extension angle. These results are used to predict qualitively the crack propagation behavior under the assumptions of linear-elastic fracture mechanics.


2013 ◽  
Vol 17 (5) ◽  
pp. 908-920 ◽  
Author(s):  
Muhammad Saleem ◽  
Asad Ullah Qazi ◽  
Asif Hameed ◽  
Muhammad Aun Bashir

Author(s):  
E. Bischoff ◽  
O. Sbaizero

Fiber or whisker reinforced ceramics show improved toughness and strength. Bridging by intact fibers in the crack wake and fiber pull-out after failure contribute to the additional toughness. These processes are strongly influenced by the sliding and debonding resistance of the interfacial region. The present study examines the interface in a laminated 0/90 composite consisting of SiC (Nicalon) fibers in a lithium-aluminum-silicate (LAS) glass-ceramic matrix. The material shows systematic changes in sliding resistance upon heat treatment.As-processed samples were annealed in air at 800 °C for 2, 4, 8, 16 and 100 h, and for comparison, in helium at 800 °C for 4 h. TEM specimen preparation of as processed and annealed material was performed with special care by cutting along directions having the fibers normal and parallel to the section plane, ultrasonic drilling, dimpling to 100 pm and final ionthinning. The specimen were lightly coated with Carbon and examined in an analytical TEM operated at 200 kV.


Author(s):  
K.L. More ◽  
R.A. Lowden

The mechanical properties of fiber-reinforced composites are directly related to the nature of the fiber-matrix bond. Fracture toughness is improved when debonding, crack deflection, and fiber pull-out occur which in turn depend on a weak interfacial bond. The interfacial characteristics of fiber-reinforced ceramics can be altered by applying thin coatings to the fibers prior to composite fabrication. In a previous study, Lowden and co-workers coated Nicalon fibers (Nippon Carbon Company) with silicon and carbon prior to chemical vapor infiltration with SiC and determined the influence of interfacial frictional stress on fracture phenomena. They found that the silicon-coated Nicalon fiber-reinforced SiC had low flexure strengths and brittle fracture whereas the composites containing carbon coated fibers exhibited improved strength and fracture toughness. In this study, coatings of boron or BN were applied to Nicalon fibers via chemical vapor deposition (CVD) and the fibers were subsequently incorporated in a SiC matrix. The fiber-matrix interfaces were characterized using transmission and scanning electron microscopy (TEM and SEM). Mechanical properties were determined and compared to those obtained for uncoated Nicalon fiber-reinforced SiC.


Author(s):  
G. McMahon ◽  
T. Malis

As with all techniques which are relatively new and therefore underutilized, diamond knife sectioning in the physical sciences continues to see both developments of the technique and novel applications.Technique Developments Development of specific orientation/embedding procedures for small pieces of awkward shape is exemplified by the work of Bradley et al on large, rather fragile particles of nuclear waste glass. At the same time, the frequent problem of pullout with large particles can be reduced by roughening of the particle surface, and a proven methodology using a commercial coupling agent developed for glasses has been utilized with good results on large zeolite catalysts. The same principle (using acid etches) should work for ceramic fibres or metal wires which may only partially pull out but result in unacceptably thick sections. Researchers from the life sciences continue to develop aspects of embedding media which may be applicable to certain cases in the physical sciences.


2020 ◽  
Vol 8 (3) ◽  
pp. 220-227
Author(s):  
Rachel G. Lilly ◽  
Tawnya J. Meadows ◽  
Jessica R. Sevecke-Hanrahan ◽  
Carrie E. Massura ◽  
Maria E. Golden ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document