scholarly journals EQUIVALENT SINGLE DEGREE OF FREEDOM METHOD FOR SOIL DYNAMIC ANALYSIS OF THE MULTI-LAYERED GROUND

Author(s):  
Kimitoshi SAKAI ◽  
Yoshitaka MURONO
2017 ◽  
Vol 20 (11) ◽  
pp. 1744-1756 ◽  
Author(s):  
Peng Deng ◽  
Shiling Pei ◽  
John W. van de Lindt ◽  
Hongyan Liu ◽  
Chao Zhang

Inclusion of ground motion–induced uncertainty in structural response evaluation is an essential component for performance-based earthquake engineering. In current practice, ground motion uncertainty is often represented in performance-based earthquake engineering analysis empirically through the use of one or more ground motion suites. How to quantitatively characterize ground motion–induced structural response uncertainty propagation at different seismic hazard levels has not been thoroughly studied to date. In this study, a procedure to quantify the influence of ground motion uncertainty on elastoplastic single-degree-of-freedom acceleration responses in an incremental dynamic analysis is proposed. By modeling the shape of the incremental dynamic analysis curves, the formula to calculate uncertainty in maximum acceleration responses of linear systems and elastoplastic single-degree-of-freedom systems is constructed. This closed-form calculation provided a quantitative way to establish statistical equivalency for different ground motion suites with regard to acceleration response in these simple systems. This equivalence was validated through a numerical experiment, in which an equivalent ground motion suite for an existing ground motion suite was constructed and shown to yield statistically similar acceleration responses to that of the existing ground motion suite at all intensity levels.


2018 ◽  
Vol 177 ◽  
pp. 395-408 ◽  
Author(s):  
Georgios Baltzopoulos ◽  
Roberto Baraschino ◽  
Iunio Iervolino ◽  
Dimitrios Vamvatsikos

2021 ◽  
Author(s):  
Roohollah M. Pirooz ◽  
Soheila Habashi ◽  
Ali Massumi

Abstract Despite the various studies carried out to evaluate the effects of seismic sequences on structures, the matter of the time gap required to be considered between the mainshock and its corresponding aftershocks in dynamic analyses has never been focused on directly. This subtle but in the meantime effective subject, influences on the amount of accumulated damage caused by earthquake sequences. In the present study, 244 near fault ground motion components from 122 earthquakes were applied to a wide variety of single degree of freedom systems having vibrating period of 0.05 to 7 seconds with linear and nonlinear behavior. Furthermore, 2 planar steel moment-resisting frames, having 3 and 12 stories, were subjected to a set of 30 ground motion components. The purpose of this investigation was to estimate the required time for the structures to cease the free vibration at the end of the mainshock. The main purpose is to generate an estimation that is function of structural system’s parameters and the strong motion duration. Excellent correlations were obtained between the rest time and the following parameters: the combination of natural period of single degree of freedom systems, as well as the strong motion duration of earthquake sequences. In consequence, a formula is proposed which estimates the required optimized rest-time of a structure based on natural vibration period, as well as the duration of strong motion. Additionally, results obtained from the dynamic analysis of the steel frames validate the rest-time values achieved from the proposed formula.


2018 ◽  
Vol 159 ◽  
pp. 01005
Author(s):  
Sri Tudjono ◽  
Patria Kusumaningrum

The response of multi-degree-of-freedom (MDOF) structure can be correlated to the response of an equivalent single-degree-of-freedom (SDOF) system, implying that the response is controlled by a single, unchanged mode shape. This equivalent SDOF method is eminent as an approximate method of dynamic analysis. In this study, equivalent SDOF method analysis is carried out on RC cantilever beam subjected to dynamic blast loading to review the transformation factors (TFs) provided by TM5-1300 code.


2011 ◽  
Vol 199-200 ◽  
pp. 32-40
Author(s):  
Yi Lai Ma ◽  
Li Lin ◽  
Xian Wen Liu

The tube-transferring car is a key part of transportation system for deepwater pipe-laying vessels. This paper covers the design of a tube-transferring car for deep sea pipe-laying, especially its lifting mechanism. Kinematics and dynamics analysis of the lifting mechanism is conducted. During dynamic analysis and calculation, the single degree of freedom mechanical system dynamic analysis method is used. The results show that the rotation angle of the lifting system has a direct impact on the lifting speed and driving force. The support reaction force in each kinematic pair which is calculated by choosing the single degree of freedom dynamics provides a theoretical basis for the design of the lifting mechanism, which is finally reflected in the selection of horizontal drive of the feeding machine and the related parameter design.


1983 ◽  
Vol 105 (3) ◽  
pp. 445-451 ◽  
Author(s):  
J. L. Wiederrich

The dynamic properties of a machine are defined by its kinetic energy, potential energy, and dissipation functions. These functions form the basis for the dynamic analysis of a machine. This paper presents a theory whereby these functions may be determined from the observed forced periodic operating response of a single degree of freedom machine. This method may have applications in machinery development and diagnosis.


2011 ◽  
Vol 128-129 ◽  
pp. 42-45
Author(s):  
Li Li Xin ◽  
Ji Hui Liang ◽  
Li Chun Qiu

For the vibrating subsoiler, considering the material acting force, the system is simplified as a single degree of freedom weight-spring-damp model which will simulate the vibrating subsoiler system based on Automatic Dynamic Analysis of Mechanical System (ADAMS). The analysis result shows that the vibrating subsoiler can not perform well under conditions of high vibration frequency and advance speed.


Sign in / Sign up

Export Citation Format

Share Document