scholarly journals Numerical Prediction Method for Local Scour with 3D Body-Fitted Coordinates

1995 ◽  
Vol 39 ◽  
pp. 683-688
Author(s):  
Satoru Ushijima ◽  
Nobukazu Tanaka
Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1469 ◽  
Author(s):  
Shuai Wang ◽  
Xiaolei Wang ◽  
Yanrong Wang ◽  
Hang Ye

In aircraft gas turbine engines, gears in the transmission system are typically cyclic in structure and inevitably encounter large dynamic loads, such as meshing excitation, resulting in high vibration loads in resonance. To prevent gear resonance failure, a ring damper is employed to reduce the resonance response. As relative motion between the gear and the ring damper occurs, vibration loads can be reduced by friction energy dissipation. Moreover, the gears in the aircraft engine are thin-walled and their axial stiffness is much smaller than radial stiffness; thus, it is easier for axial vibration to cause resonance failure. This paper proposes an equivalent damping numerical prediction method for a ring damper under axial vibration, which greatly shortens the calculation time and prevents the forced response analysis of nonlinear structures. Via this method, the influence of ring damper structural parameters on friction damping in gears under axial vibration is investigated. The results indicate that the friction coefficient and mass of the ring damper have a great influence on damping performance.


1955 ◽  
Vol 33 (5) ◽  
pp. 205-216 ◽  
Author(s):  
M. Komabayasi ◽  
K. Miyakoda ◽  
M. Aihara ◽  
S. Manabe ◽  
K. Katow

2007 ◽  
Vol 51 ◽  
pp. 847-852
Author(s):  
Satoru USHIJIMA ◽  
Akira FUKUTANI ◽  
Susumu FUJIOKA ◽  
Iehisa NEZU

2021 ◽  
Vol 9 (12) ◽  
pp. 1421
Author(s):  
Zhiyong Zhang ◽  
Yakun Guo ◽  
Yuanping Yang ◽  
Bing Shi ◽  
Xiuguang Wu

In nearshore regions, bidirectional tidal flow is the main hydrodynamic factor, which induces local scour around submarine pipelines. So far, most studies on scour around submarine pipelines only consider the action of unidirectional, steady currents and little attention has been paid to the situation of bidirectional tidal currents. To deeply understand scour characteristics and produce a more accurate prediction method in bidirectional tidal currents for engineering application, a series of laboratory scale experiments were conducted in a bidirectional current flume. The experiments were carried out at a length scale of 1:20 and the tidal currents were scaled with field measurements from Cezhen pipeline in Hangzhou Bay, China. The experimental results showed that under bidirectional tidal currents, the scour depth increased significantly during the first half of the tidal cycle and it only increased slightly when the flow of the tidal velocity was near maximum flood or ebb in the following tidal cycle. Compared with scour under a unidirectional steady current, the scour profile under a bidirectional tidal current was more symmetrical, and the scour depth in a bidirectional tidal current was on average 80% of that under a unidirectional, steady current based on maximum peak velocity. Based on previous research and the present experimental data, a more accurate fitted equation to predict the tidally induced live-bed scour depth around submarine pipelines was proposed and has been verified using field data from the Cezhen pipeline.


Sign in / Sign up

Export Citation Format

Share Document