scholarly journals An Equivalent Damping Numerical Prediction Method for the Ring Damper Used in Gears under Axial Vibration

Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1469 ◽  
Author(s):  
Shuai Wang ◽  
Xiaolei Wang ◽  
Yanrong Wang ◽  
Hang Ye

In aircraft gas turbine engines, gears in the transmission system are typically cyclic in structure and inevitably encounter large dynamic loads, such as meshing excitation, resulting in high vibration loads in resonance. To prevent gear resonance failure, a ring damper is employed to reduce the resonance response. As relative motion between the gear and the ring damper occurs, vibration loads can be reduced by friction energy dissipation. Moreover, the gears in the aircraft engine are thin-walled and their axial stiffness is much smaller than radial stiffness; thus, it is easier for axial vibration to cause resonance failure. This paper proposes an equivalent damping numerical prediction method for a ring damper under axial vibration, which greatly shortens the calculation time and prevents the forced response analysis of nonlinear structures. Via this method, the influence of ring damper structural parameters on friction damping in gears under axial vibration is investigated. The results indicate that the friction coefficient and mass of the ring damper have a great influence on damping performance.

Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 677 ◽  
Author(s):  
Yanrong Wang ◽  
Hang Ye ◽  
Xianghua Jiang ◽  
Aimei Tian

In turbomachinery applications, thin-walled gears are cyclic symmetric structures and often subject to dynamic meshing loading which may result in high cycle fatigue (HCF) of the thin-walled gear. To avoid HCF failure, ring dampers are designed for gears to increase damping and reduce resonance amplitude. Ring dampers are installed in the groove. They are held in contact with the groove by normal pressure generated by interference or centrifugal force. Vibration energy is attenuated (converted to heat) by frictional force on the contact interface when the relative motion between ring dampers and gears takes place. In this article, a numerical method for the prediction of friction damping in thin-walled gears with ring dampers is proposed. The nonlinear damping due to the friction is expressed as equivalent mechanical damping in the form of vibration stress dependence. This method avoids the forced response analysis of nonlinear structures, thereby significantly reducing the time required for calculation. The validity of this numerical method is examined by a comparison with literature data. The method is applied to a thin-walled gear with a ring damper and the effect of design parameters on friction damping is studied. It is shown that the rotating speed, geometric size of ring dampers and friction coefficient significantly influence the damping performance.


Author(s):  
Jens Aschenbruck ◽  
Christopher E. Meinzer ◽  
Linus Pohle ◽  
Lars Panning-von Scheidt ◽  
Joerg R. Seume

The regeneration of highly loaded turbine blades causes small variations of their geometrical parameters. To determine the influence of such regeneration-induced variances of turbine blades on the nozzle excitation, an existing air turbine is extended by a newly designed stage. The aerodynamic and the structural dynamic behavior of the new turbine stage are analyzed. The calculated eigenfrequencies are verified by an experimental modal analysis and are found to be in good agreement. Typical geometric variances of overhauled turbine blades are then applied to stator vanes of the newly designed turbine stage. A forced response analysis of these vanes is conducted using a uni-directional fluid-structure interaction approach. The effects of geometric variances on the forced response of the rotor blade are evaluated. It is shown that the vibration amplitudes of the response are significantly higher for some modes due to the additional wake excitation that is introduced by the geometrical variances e.g. 56 times higher for typical MRO-induced variations in stagger-angle.


Author(s):  
Kiran Manoharan ◽  
Travis Smith ◽  
Benjamin Emerson ◽  
Christopher M. Douglas ◽  
Tim Lieuwen ◽  
...  

This study is motivated by the necessity to develop a low order prediction approach for unsteady heat release response characteristics in lean premixed gas turbine combustors. This in turn requires an accurate description of the coherent hydrodynamic oscillations induced in the combustor flow by acoustic forcing. Time resolved velocity and flame position fields are obtained using sPIV and OH-PLIF measurements on a single nozzle, swirl-stabilized, premixed, methane-air flame in a model “unwrapped” annular combustor rig. A natural acoustic oscillation in the rig at 115 Hz results in a coherent flow oscillation that is concentrated primarily within the shear layer between the annular jet flow and the central recirculation zone. A linear stability analysis performed about time averaged base flow fields shows that the flow does not have any self-excited hydrodynamic modes. We then compare predictions from a forced response analysis at a forcing frequency of 115 Hz, based on the linearized Navier-Stokes equations for this coherent response. Good qualitative agreement between linear forced response analysis predictions and experimental response results, is seen for the spatial variation of velocity oscillation amplitude fields, away from the burner centerline. Further, good quantitative agreement between predictions and the experimental response is seen for the phase speed of velocity oscillations along the shear layer between the annular jet and the central recirculation zone. This phase velocity is an important flow field characteristic that has a significant impact on the heat release response that results from these coherent velocity oscillations. Present methods for forced response analysis assume uniform forcing amplitude along the radial direction at the forcing location, as well as, open flows along the streamwise direction. Both these assumptions are not strictly true for the present burner which has a center body on its axis. This maybe the reason for somewhat poor qualitative and quantitative agreement between experiments and predictions at the centerline.


Author(s):  
Tobias R. Müller ◽  
Damian M. Vogt ◽  
Klemens Vogel ◽  
Bent A. Phillipsen ◽  
Peter Hönisch

The effects of detailing on the prediction of forced-response in a transonic axial turbine stage, featuring a parted stator design, asymmetric inlet and outlet casings as well as rotor cavities, is investigated. Ensuring the mechanical integrity of components is of paramount importance for the safe and reliable operation of turbomachines. Among others, flow induced resonance excitation can lead to high-cycle fatigue (HCF) and potentially to damage of components unless properly damped. This numerical study is assessing the necessary degree of detailing in terms of spatial and temporal discretization, boundary conditions of the pre-stressed rotor geometry as well as geometrical detailing for the reliable prediction of the aerodynamic excitation of the structure. In this context, the sensitivity of the aerodynamic forcing is analyzed by means of the generalized force criterion, showing a significant influence for some of the investigated variations of the numerical model. Moreover, the origin and further progression of several low-engine-orders (LEO) within the flow field, as well as their interaction with different geometric details has been analyzed based on the numerical results obtained from a full 360° CFD-calculation of the investigated turbine stage. The predicted flow induced vibration of the structure has been validated by means of a full forced-response analysis, where a good agreement with tip-timing data has been found.


Author(s):  
Fanny M. Besem ◽  
Robert E. Kielb ◽  
Nicole L. Key

The frequency mistuning that occurs due to manufacturing variations and wear and tear of the blades can have a significant effect on the flutter and forced response behavior of a blade row. Similarly, asymmetries in the aerodynamic or excitation forces can tremendously affect the blade responses. When conducting CFD simulations, all blades are assumed to be tuned (i.e. to have the same natural frequency) and the aerodynamic forces are assumed to be the same on each blade except for a shift in interblade phase angle. The blades are thus predicted to vibrate at the same amplitude. However, when the system is mistuned or when asymmetries are present, some blades can vibrate with a much higher amplitude than the tuned, symmetric system. In this research, we first conduct a deterministic forced response analysis of a mistuned rotor and compare the results to experimental data from a compressor rig. It is shown that tuned CFD results cannot be compared directly with experimental data because of the impact of frequency mistuning on forced response predictions. Moreover, the individual impact of frequency, aerodynamic, and forcing function perturbations on the predictions is assessed, leading to the conclusion that a mistuned system has to be studied probabilistically. Finally, all perturbations are combined and Monte-Carlo simulations are conducted to obtain the range of blade response amplitudes that a designer could expect.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1656 ◽  
Author(s):  
Lin Li ◽  
Zhou Jiang ◽  
Yu Fan ◽  
Jun Li

In this paper, we investigate the coupled band gaps created by the locking phenomenon between the electric and flexural waves in piezoelectric composite plates. To do that, the distributed piezoelectric materials should be interconnected via a ‘global’ electric network rather than the respective ‘local’ impedance. Once the uncoupled electric wave has the same wavelength and opposite group velocity as the uncoupled flexural wave, the desired coupled band gap emerges. The Wave Finite Element Method (WFEM) is used to investigate the evolution of the coupled band gap with respect to propagation direction and electric parameters. Further, the bandwidth and directionality of the coupled band gap are compared with the LR and Bragg gaps. An indicator termed ratio of single wave (RSW) is proposed to determine the effective band gap for a given deformation (electric, flexural, etc.). The features of the coupled band gap are validated by a forced response analysis. We show that the coupled band gap, despite directional, can be much wider than the LR gap with the same overall inductance. This might lead to an alternative to adaptively create band gaps.


Author(s):  
Nikola Kovachev ◽  
Christian U. Waldherr ◽  
Jürgen F. Mayer ◽  
Damian M. Vogt

Resonant response of turbomachinery blades can lead to high cycle fatigue (HCF) if the vibration amplitudes are excessive. Accurate and reliable simulations of the forced response phenomenon require detailed CFD and FE models that may consume immense computational costs. In the present study, an alternative approach is applied, which incorporates nonlinear harmonic (NLH) CFD simulations in a one-way fluid-structure interaction (FSI) workflow for the prediction of the forced response phenomenon at reduced computational costs. Five resonance crossings excited by the stator in a radial inflow turbocharger turbine are investigated and the aerodynamic excitation and damping are predicted using this approach. Blade vibration amplitudes are obtained from a subsequent forced response analysis combining the aerodynamic excitation with aerodynamic damping and a detailed structural model of the investigated turbine rotor. A comparison with tip timing measurement data shows that all predicted values lay within the range of the mistuned blade response underlining the high quality of the utilized workflow.


Sign in / Sign up

Export Citation Format

Share Document