scholarly journals HUMAN IMPACT ON BED DEGRADATION AND TRANSITION OF SEDIMENT LOAD IN THE CHIKUGOGAWA RIVER CHANNEL

2007 ◽  
Vol 51 ◽  
pp. 997-1002 ◽  
Author(s):  
Katsuhide YOKOYAMA ◽  
Tomoyuki SUZUKI ◽  
Nobuchika MIMOTO
2020 ◽  
Author(s):  
Qiao Shuqing ◽  
Shi Xuefa ◽  
Yonggui Yu ◽  
Limin Hu ◽  
Lin Zhou ◽  
...  

<p>The fluvial sediment to the sea is the base of coastal geomorphology and biogeochemical processes, and its transport is an important pathway to the global biogeochemical cycle. The Yellow River is one of globally well-known large rivers because of high sediment load and Chinese Mother River. Its channel shifts frequently because of high sediment load and steep river-channel gradient in the lower reaches . The terminal channel has shifted more than 50 times since 1855 and the last two changes in 1976 and 1996. Furthermore, Yellow River Conservancy Commission has began to implement Water-Sediment Regulation Scheme (WSRS) since 2002, to increase the main channel discharge capacity and to reduce deposition in the reservoirs and river channel. Surface sediment, multi-core and gravity sediment cores, remote sensing images and bathymetric data near the Yellow River delta were collected to study the impact of WSRS and river terminal change together with the water and sediment discharge at the gauging station. Especially, <sup>7</sup>Be, <sup>210</sup>Pb and <sup>137</sup>Cs, grain size, sediment color and TOC/TN was measured to show sedimentary record of WSRS and channel shift on inter-and intra-annual time scale. The results show that the fresh sediment from Yellow River  during 2014 WSRS period can be transported eastward more than 80 km off the rivermouth, while cannot pass 38° easily. Meanwhile the sediment can penetrate as deep as 12 cm. The subaerial delta area is mostly stable after 2002, and its balance is mainly controlled by the surrounding artificial coastline. The subaqueous delta changed from trapping about 4.6×10<sup>8</sup> t to being eroded ~ 3.1×10<sup>8</sup> t and 1.1×10<sup>8</sup> t each year during the three stages of 1976-1996, 1996-2002 and 2002-2014. It is proposed that the subaerial delta area will change little except for the Q8 outlet area, while the subaqueous delta evolution mostly depend on the Huanghe material besides the hydrodynamic conditions. In addition, the aim of WSRS to scour the lower riverbed will recede in future. This study deepens our understanding of the fluvial sediment disperse pattern and sedimentation under the influence of human activities and hydrodynamic conditions.</p><div>Acknowledgements</div><div> <div>This study was supported by National Programme on Global Change and Air-Sea Interaction (GASI-GEOGE-03) and the Natural Science Foundation of China (U1606401).</div> </div>


2021 ◽  
Author(s):  
Sardar Ateeq-Ur-Rehman ◽  
Nils Broothaerts ◽  
Ward Swinnen ◽  
Gert Verstraeten

<p>Numerical hydro-morphodynamic models can simulate the impact of future changes in climate and land cover on river channel dynamics. Accurate predictions of the hydro-morphological changes within river channels require a realistic representation of controlling factors and boundary conditions (BC), such as the sediment load. This is, in particular, true where simulations are run over longer timescales and when sparse data on sediment load is available. Using sediment rating curves to reconstruct the missing sediment load data can lead to poor estimates of temporal variations in sediment load, and hence, erroneous predictions of channel morphodynamics. Furthermore, when simulating channel morphological changes at longer timescales, this comes at a high computational cost making it impossible to run various scenarios of changing boundary conditions to long river reaches with sufficient spatial detail.  Here, we apply different methods (morphological factors (MFs) and wavelet transform (WT)) to overcome these problems and to arrive at faster and more accurate predictions of long-term morphodynamic simulations.</p><p> </p><p>We modelled river channel bed level changes of the River Dijle (central Belgium) from 1969 to 1999. Detailed cross-sectional surveys every 20 to 25 m along the river axis were collected in 1969, 1999 and 2018. Since 1969, the river has been incised by about 2 m most probably as a response to land-use/land-cover changes and subsequent changes in discharge and sediment load.  Daily discharge and water level measurements are available for the entire period; however, daily suspended sediment load was only collected between 1998 and 2000. Therefore, WTs were coupled with artificial neural networks (WT-ANN) to calculate long-term sediment load BCs (1969-1999) from the short-term collected suspended sediment concentration samples. Sediment load predictions with sediment rating curves only obtain an R<sup>2</sup> of 0.115, whereas WT-ANN predictions of suspended sediment load data show an R<sup>2</sup> of 0.902.</p><p> </p><p>Using MFs the reference hydrograph was condensed with a factor of 10 and 20. WT is a mathematical tool that can convert time-domain signals into time-frequency domain signals by passing through low and high-level filters. Passing sediment load time series through these filters create another synthetic BCs containing the frequential and spatial information with half the original signal's temporal length. Thus we also compare the modelling performance using WT generated synthetic BCs with MFs. Similarly, 36x1 to 36x10 processors of an HPC was used to simulate 16 km river reach containing 3,33,305 mesh nodes (with 1.5 m mesh resolution).  Interestingly, with a significant reduction in computational cost, there was a mild difference (R<sup>2</sup>=0.802 using MFs 10 and R<sup>2</sup>=0.763 using MFs 20) in model performance without using MFs during initial trials. Surprisingly, generating a synthetic time series using WT did not perform well. Therefore, hydrograph compression using MFs is found the best option to reduce the computational cost, significantly. Although the computational time reduced from 30 days to only 3 days using MFs and more precise BCs calibrated model with R<sup>2</sup>=0.70, WT poor performance needs to be still investigated.</p>


2021 ◽  
Vol 66 (3) ◽  
pp. 89-103
Author(s):  
Piotr Szwarczewski

The Mozgawa area, located in the Ponidzie Pińczowskie Region (SE part of the Nida River Basin), is a very good example of response of the natural environment to the progressive human impact. The research conducted there indicates that before the appearance of the first Neolithic farmers, the relief of the area was different to the modern one. Constant and intensive agricultural use of the loess plateau and the adjacent slopes (started in the Neolithic period some 5890±100 BP) led to the filling of the valley bottoms and local depressions with deluvial deposits, the thickness of which reaches up to 12 m. The deposition of these sediments and elevation of the surface level in the subordinate areas resulted in the creation of the Mozgawka River channel since the begining of the Roman Period. Formerly it was impossible (as it was within the depression) and the runoff was only through the karst system. Since that moment it has also started the accumulation of the alluvial fan, the progradation of which leads to the pushing of the Nida River channel towards the East.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Anna-Lisa Maaß ◽  
Holger Schüttrumpf ◽  
Frank Lehmkuhl

AbstractClimate, geology, geomorphology, soil, vegetation, geomorphology, hydrology, and human impact affect river–floodplain systems, especially their sediment load and channel morphology. Since the beginning of the Holocene, human activity is present at different scales from the catchment to the channel and has had an increasing influence on fluvial systems. Today, many river–floodplain systems are transformed in course of river restorations to “natural” hydrodynamic and morphodynamic conditions without human impacts. Information is missing for the historical or rather “natural” as well as for the present-day situation. Changes of the “natural” sediment fluxes in the last centuries result in changes of the fluvial morphology. The success of river restorations depends on substantial knowledge about historical as well as present-day fluvial morphodynamics. Therefore, it is necessary to analyze the consequences of historical impacts on fluvial morphodynamics and additionally the future implications of present-day human impacts in course of river restorations. The objective of this review is to summarize catchment impacts and river channel impacts since the beginning of the Holocene in Europe on the fluvial morphodynamics, to critically investigate their consequences on the environment, and to evaluate the possibility to return to a “natural” morphological river state.


2019 ◽  
pp. 3-17
Author(s):  
K. M. Berkovich ◽  
L. V. Zlotina ◽  
L. A. Turykin

The riverbank erosion produces a great risk for the urban development, structures and communications located on the banks. Bank erosion, as an integral part of the lateral river channel migrations, is a multi-factorial phenomenon. Empirical evidence suggests that the riverbank erosion depends on the size of the river, the morphology of the bends, water flow; however, a big role plays erosion resistance of the banks, due to their structure and vegetation. It varies at changeable riverbank soils wetting in accordance with the hydrological regime of the river. Human activity contributes significantly to the intensification of lateral migrations, especially the construction of reservoirs that change the hydrological regime of rivers and sediment transport. Incision, daily flow regulation, redistribution of annual runoff, reducing the sediment load are the main factors that intensify the riverbank erosion. As an example, the situated downstream of the dam sections of the Volga River and Sheksna River in the Rybinsk City were examined and all these factors were revealed there themselves clearly. Considering these factors allowed predicting the riverbank erosion and provided the basis for bank protection program.


Author(s):  
Gopikumar S ◽  
◽  
Sundararajan S ◽  
Gladston JAK ◽  
Kumar CAV ◽  
...  

Each channel has unique characteristics of its own; River Thamirabarani being no exception. The project proposal aims at investigating the hydraulic geometry of the Thamirabarani River from Pothigai to the downstream up to Srivaikundam [1]. The interrelationship among stream sediment load, channel width and channel depth shows the nature of hydraulic geometry of Thamirabarani River channel. Due to the effect of Papanasam dam the natural flow of this river has been obstructed, and this is resulting in reduced discharge at downstream [2]. Confluences of major tributaries such as Manimuthar, Servalaru, Gadana and Ramanadhi may play significant role for the influx of extra discharge and sediment load to the main river. This extra sediment influx is also responsible for frequent bar formation in the river channel. The input morphometric maps have to be prepared using GIS and Remote Sensing tools like Arc GIS 10.1 and Global Mapper [3].


2022 ◽  
Author(s):  
Hakan Tanyaş ◽  
Tolga Görüm ◽  
Dalia Kirschbaum ◽  
Luigi Lombardo

AbstractRoads can have a significant impact on the frequency of mass wasting events in mountainous areas. However, characterizing the extent and pervasiveness of mass movements over time has rarely been documented due to limitations in available data sources to consistently map such events. We monitored the evolution of a road network and assessed its effect on mass movements for a 11-year window in Arhavi, Turkey. The main road construction projects run in the area are associated with a hydroelectric power plant as well as other road extension works and are clearly associated with the vast majority (90.1%) of mass movements in the area. We also notice that the overall number and size of the mass movements are much larger than in the naturally occurring comparison area. This means that the sediment load originating from the anthropogenically induced mass movements is larger than its counterpart associated with naturally occurring landslides. Notably, this extra sediment load could cause river channel aggregation, reduce accommodation space and as a consequence, it could lead to an increase in the probability and severity of flooding along the river channel. This marks a strong and negative effect of human activities on the natural course of earth surface processes. We also compare frequency-area distributions of human-induced mass movements mapped in this study and co-seismic landslide inventories from the literature. By doing so, we aim to better understand the consequences of human effects on mass movements in a comparative manner. Our findings show that the damage generated by the road construction in terms of sediment loads to river channels is compatible with the possible effect of a theoretical earthquake with a magnitude greater than Mw = 6.0.


Sign in / Sign up

Export Citation Format

Share Document