scholarly journals Phylogenetic relationship of Gram Negative Bacteria of Enterobacteriaceae Family in the Positive Widal Blood Cultures based on 16S rRNA Gene Sequences

2015 ◽  
Vol 19 (1) ◽  
pp. 64
Author(s):  
Sri Darmawati ◽  
Langkah Sembiring ◽  
Widya Asmara ◽  
Wayan T. Artama ◽  
Masashi Kawaichi

The purpose of this study was to analyze the phylogenetic relationship of Gram negative bacteria (3strains of Salmonella typhi, 1 strain of Escherichia coli, 1 strain of Serratia marcescens, and 3 strains of Enterobactercloacae) of Enterobacteriaceae family in positive Widal blood cultures based on 16S rRNA gene sequences. Theresults respectively showed that each two 16S rRNA gene clones of Serratia marcescens KD 08.4 had a closerelationship with 16S rRNA gene of Serrratia marcescens ATCC 13880 (similarity: 99.53-99.8%), Eschericia coliBA 30.1 with Eschericia coli ATCC 11775T (similarity: 99.38-99.67%), Salmonella typhi BA 07.4, Salmonella typhiKD 30.4, and Salmonella typhi SA 02.2 with Salmonella typhi ATCC 19430T (similarity: 99.4-100%) as well as theisolates of Enterobacter cloacae SA 02.1, Enterobacter cloacae BA 45.4.1, one 16S rRNA gene clone of Enterobactercloacae TG 03.5 with Enterobacter cloacae ATCC 23373 (similarity: 99.0-99.87%).

2010 ◽  
Vol 60 (6) ◽  
pp. 1271-1279 ◽  
Author(s):  
Hélène Marchandin ◽  
Corinne Teyssier ◽  
Josiane Campos ◽  
Hélène Jean-Pierre ◽  
Frédéric Roger ◽  
...  

Three strains of a hitherto unknown, Gram-negative, tiny, anaerobic coccus were collected from human clinical samples originating from skin and soft tissues. The three isolates displayed at least 99.9 % identity in their 16S rRNA gene sequences and more than 99.8 % identity in their dnaK gene sequences. The isolates were affiliated to the family Veillonellaceae, the coccobacillus Dialister micraerophilus being the most closely related species, but there was no more than 91.1 % identity in the 16S rRNA gene sequence between this species and the three isolates. Phylogeny based on the 16S rRNA gene confirmed that the three strains represent a novel and robust lineage within the current family Veillonellaceae. A similar genomic structure was demonstrated for the three isolates by PFGE-based analysis. Morphology and metabolic end products, as well as genotypic and phylogenetic data supported the proposal of the novel genus Negativicoccus gen. nov., with the novel species Negativicoccus succinicivorans sp. nov. [type strain ADV 07/08/06-B-1388T (=AIP 149.07T=CIP 109806T=DSM 21255T=CCUG 56017T) as type species]. Phylogenetic analyses based on the 16S rRNA gene sequences of members of the phylum Firmicutes and other phyla indicated that the family Veillonellaceae forms a robust lineage clearly separated from those of the classes ‘Bacilli’, ‘Clostridia’, Thermolithobacteria and ‘Erysipelotrichi’ in the phylum Firmicutes. Therefore, we propose that this family is a class-level taxon in the phylum Firmicutes, for which the name Negativicutes classis nov. is proposed, based on the Gram-negative type of cell wall of its members, with the type order Selenomonadales ord. nov. In this order, a novel family, Acidaminococcaceae fam. nov., is proposed and description of the family Veillonellaceae is emended.


2013 ◽  
Vol 18 (1) ◽  
pp. 67
Author(s):  
Fahrizal Hazra ◽  
Etty Pratiwi

The objectives of the research were: (i)  to isolate and characterize of phosphate solubilizing bacteria (PSB) and (ii) to identify PSB based on molecular amplification of 16S rRNA gene.  Soil samples were collected from rhizosphere in Bogor, West Nusa Tenggara, and East Nusa Tenggara.  Several stages in this research were: (i) isolation PSB in Pikovskaya agar, (ii) morphological and biochemical characterization of PSB, (iii) measurement of  phosphatase enzymes, and (iv) measurement of secreting indole acetic acid phytohormone.   As many as 29 isolates of PSB have been collected and three isolates of them, namely: P 3.5 (East Nusa Tenggara), P 6.2 (West Nusa Tenggara), and P 10.1 (Citeureup, West Java) were chosen for further study.  There were many characteristics of isolate P 10.1: (i) it had capable to solubilize P with the value of highest solubilization index (1.80), (ii) it had the highest phosphatase enzyme (120.40 mg kg-1), and (iii) it had the highest pH decrease at each observation for six days.  Isolates P 3.5 and P 10.1 were the Gram-negative bacteria with coccus shapes and isolate P 6.2 was a Gram-negative bacteria with bacillus shape.  Deoxiribonucleat Acid (DNA) amplification of these bacteria employing 16S rRNA primers generated the 1,300bp-PCR product.  The results of the analysis of 16S rRNA gene sequences showed that isolates P 3.5 and P 10.1 has 98% similarity with Gluconacetobacter sp. strains Rg1-MS-CO and isolate P 6.2 has 97% similarity with Enterobacter sp. pp9c strains.Keywords: 16S rRNA, indole acetic acid, isolation, phosphatase enzymes, phosphate solubilizing bacteria[How to Cite : Hazra F and E Pratiwi. 2013. Isolation, Characterization, and Molecular Identification of Phosphate Solubilizing Bacteria from Several Tropical Soils. J Trop Soils, 18 (1): 67-74. doi: 10.5400/jts.2013.18.1.67][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.1.67]


2011 ◽  
Vol 60 (9) ◽  
pp. 1281-1286 ◽  
Author(s):  
Jade L. L. Teng ◽  
Ming-Yiu Yeung ◽  
Geoffrey Yue ◽  
Rex K. H. Au-Yeung ◽  
Eugene Y. H. Yeung ◽  
...  

ALGAE ◽  
2002 ◽  
Vol 17 (3) ◽  
pp. 153-159 ◽  
Author(s):  
Jong-In Kim ◽  
Jong-Hun Lim ◽  
Jae-Wan Lee ◽  
Hae-Bok Lee

2020 ◽  
Author(s):  
CC Kim ◽  
WJ Kelly ◽  
ML Patchett ◽  
GW Tannock ◽  
Z Jordens ◽  
...  

© 2017 IUMS. A novel anaerobic pectinolytic bacterium (strain 14T) was isolated from human faeces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 14T belonged to the family Ruminococcaceae, but was located separately from known clostridial clusters within the taxon. The closest cultured relative of strain 14T was Acetivibrio cellulolyticus (89.7% sequence similarity). Strain 14T shared ~99% sequence similarity with cloned 16S rRNA gene sequences from uncultured bacteria derived from the human gut. Cells were Gram-stain-positive, non-motile cocci approximately 0.6μm in diameter. Strain 14T fermented pectins from citrus peel, apple, and kiwifruit as well as carbohydrates that are constituents of pectins and hemicellulose, such as galacturonic acid, xylose, and arabinose. TEM images of strain 14T, cultured in association with plant tissues, suggested extracellular fibrolytic activity associated with the bacterial cells, forming zones of degradation in the pectin-rich regions of middle lamella. Phylogenetic and phenotypic analysis supported the differentiation of strain 14T as a novel genus in the family Ruminococcaceae. The name Monoglobus pectinilyticus gen. nov., sp. nov. is proposed; the type strain is 14T (JCM 31914T=DSM 104782T).


Sign in / Sign up

Export Citation Format

Share Document