scholarly journals Stabilization of Silicone Dioxide Nanoparticle Foam in Tertiary Petroleum Production

2019 ◽  
Vol 19 (4) ◽  
pp. 985
Author(s):  
Mohd Zulkifli Bin Mohamad Noor ◽  
Wong Yi Teng ◽  
Sonny Irawan

Nanoparticles have emerged with substantially to the end user and industrial applications. The applications initiated to enhance oil recovery (EOR) and also as alternative solution in increasing the rheological properties of fluids at difference condition. The study aims to evaluate the effects of various surfactant and nanoparticle concentration as well as hydrocarbons on foam stability. Series of static state experiments were conducted to investigate the foam development stability of five different concentrations for surfactant from 0.05 to 0.25 wt.% and nanoparticle from 0 to 1.00 wt.% in the presence of white mineral oil in synthetic brine suspension. By discussing to the Ross-Miles method - half-life capacities (t½), the foam stability of the aqueous foam was expected. Results suggested that the foam stability is increase with the present of nanoparticle. The 0.5 wt.% SiO2 nanoparticles enhanced foam formed the most lasting in the absence of white mineral oil as its t½ in presence of oil is 0.6 times smaller than in the absence of oil. It is concluded that the presence of nanoparticles for surfactant foam stability can be enhanced. The used of nanoparticles can be further study with different type of nanoparticles, only with small amount of nanoparticles used can further stabilize the foam.

2021 ◽  
Vol 56 (6) ◽  
pp. 962-970
Author(s):  
Ishaq Ahmad ◽  
Liu Chengwen ◽  
Wu Mingxuan ◽  
Xu Zhengxiao ◽  
Atif Zafar ◽  
...  

2014 ◽  
Vol 884-885 ◽  
pp. 82-86
Author(s):  
Ji Chao Fang ◽  
Cai Li Dai ◽  
Kai Wang ◽  
Qin Fang Ding ◽  
Si Yu Wang

In order to further enhance oil recovery (EOR) of the high temperature and high salt oil fields by foam flooding, one foaming agent was screened by airflow method. The influence of oil-water and pressure on foamability and stability were evaluated,and oil displacement experiment was also conducted. The results show that CS-1 foaming agent has better foamability and stability than the others under the reservoir conditions (Temperature 110 °C, Salinity 11.52×104 mg/L, Ca2+&Mg2+ 7654 mg/L). The foam stability will be better as the pressure rise or be worse when it met the crude oil. Oil recovery was improved by 4.13% after waterflood and the total recovery is 60.75%.


SPE Journal ◽  
2019 ◽  
Vol 25 (01) ◽  
pp. 416-431 ◽  
Author(s):  
Songyan Li ◽  
Qun Wang ◽  
Zhaomin Li

Summary Foam flooding is an important method used to protect oil reservoirs and increase oil production. However, the research on foam fluid is generally focused on aqueous foam, and there are a few studies on the stability mechanism of oil-based foam. In this paper, a compound surfactant consisting of Span® 20 and a fluorochemical surfactant is determined as the formula for oil-based foam. The foam volume and half-life in the bulk phase are measured to be 275 mL and 302 seconds, respectively, at room temperature and atmospheric pressure. The stability mechanism of oil-based foam is proposed by testing the interfacial tension (IFT) and interfacial viscoelasticity. The lowest IFT of 18.5 mN/m and the maximum viscoelasticity modulus of 16.8 mN/m appear at the concentration of 1.0 wt%, resulting in the most-stable oil-based foam. The effect of oil viscosity and temperature on the properties of oil-based foam is studied. The foam stability increases first and then decreases with the rising oil viscosity, and the stability decreases with rising temperature. The apparent viscosity of oil-based foam satisfies the power-law non-Newtonian properties, and this viscosity is much higher than that of the phases of oil and CO2. The flow of oil-based foam in porous media is studied through microscopic-visualization experiments. Bubble division, bubble merging, and bubble deformation occur during oil-based-foam flow in porous media. The oil-recovery efficiency of the oil-based-foam flooding is 78.3%, while the oil-recovery efficiency of CO2 flooding is only 28.2%. The oil recovery is enhanced because oil-based foam reduces CO2 mobility, inhibits gas channeling, and improves sweep efficiency. The results are meaningful for CO2 mobility control and for the application of foam flooding for enhanced oil recovery (EOR).


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 61-68
Author(s):  
Dong Zhang ◽  
Jian Guang Wei ◽  
Run Nan Zhou

AbstractActive-polymer attracted increasing interest as an enhancing oil recovery technology in oilfield development owing to the characteristics of polymer and surfactant. Different types of active functional groups, which grafted on the polymer branched chain, have different effects on the oil displacement performance of the active-polymers. In this article, the determination of molecular size and viscosity of active-polymers were characterized by Scatterer and Rheometer to detect the expanded swept volume ability. And the Leica microscope was used to evaluate the emulsifying property of the active-polymers, which confirmed the oil sweep efficiency. Results show that the Type I active-polymer have a greater molecular size and stronger viscosity, which is a profile control system for expanding the swept volume. The emulsification performance of Type III active-polymer is more stable, which is suitable for improving the oil cleaning efficiency. The results obtained in this paper reveal the application prospect of the active-polymer to enhance oil recovery in the development of oilfields.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Wenjie Zou ◽  
Zichuan Fang ◽  
Zhijun Zhang ◽  
Zhenzhen Lu

The adsorption of polymers affects the cost and oil recovery in oil reservoir exploitation and the flocculation effect in the treatment of oil sand tailings. The adhesion and adsorption of a hydrophobically modified polyacrylamide (HMPAM), i.e., P(AM-NaAA-C16DMAAC), on silica and asphaltene were investigated using surface force measurements, thermodynamic analysis and quartz crystal microbalance with dissipation (QCM-D) measurement. Our study indicates that HMPAM polymer has strong interaction with both silica and asphaltene. The adhesion force of HMPAM on silica was stronger than that on asphaltene surface. Consistently, the adsorption of HMPAM was also greater on silica surface, with a more rigid layer formed on the surface. For HMPAM/silica system, the attractive interaction and the strong adhesion are mainly driven by the hydrogen bonding and electrostatic interaction. For HMPAM/asphaltene system, it is mainly due to hydrophobic interaction between the long hydrocarbon chains of HMPAM and asphaltene. Furthermore, continuous adsorption of HMPAM was detected and multiple layers formed on both silica and asphaltene surfaces, which can be attributed to the hydrophobic chains of HMPAM polymers. This work has illustrated the interaction mechanism of HMPAM polymer on hydrophilic silica and hydrophobic asphaltene surfaces, which provide insight into the industrial applications of hydrophobically modified polymer.


2020 ◽  
Vol 12 (21) ◽  
pp. 24201-24208
Author(s):  
Peisong Liu ◽  
Xiaohong Li ◽  
Huanhuan Yu ◽  
Liyong Niu ◽  
Laigui Yu ◽  
...  

2016 ◽  
Vol 24 (4) ◽  
pp. 460-470 ◽  
Author(s):  
Xiaomeng Wang

Water-soluble polymers have been used in many applications in the oil sand and heavy oil industries, including drilling, enhanced oil recovery, tailings treatment, and water treatment. Because they are water soluble, residual polymer can remain with the aqueous phase, potentially leading to environmental impacts. Investigating the environmental fate of these water-soluble polymers is particularly important as they may be toxic to aquatic biota or terrestrial animal life. However, since polymers are somewhat complex because of their high molecular weight, there are many challenges in their measurement, especially in complex matrices. In this paper, polymers used in oilfield applications, particularly in the oil sand or heavy oil industries, are reviewed and various analytical methods for polymer characterization are compared.


2015 ◽  
Vol 23 (1) ◽  
pp. 276-280 ◽  
Author(s):  
Yongqiang Zhang ◽  
Zhidong Chang ◽  
Wenli Luo ◽  
Shaonan Gu ◽  
Wenjun Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document