dilational viscoelasticity
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 6)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 5 (1) ◽  
pp. 14
Author(s):  
Georgi G. Gochev ◽  
Volodymyr I. Kovalchuk ◽  
Eugene V. Aksenenko ◽  
Valentin B. Fainerman ◽  
Reinhard Miller

The theoretical description of the adsorption of proteins at liquid/fluid interfaces suffers from the inapplicability of classical formalisms, which soundly calls for the development of more complicated adsorption models. A Frumkin-type thermodynamic 2-d solution model that accounts for nonidealities of interface enthalpy and entropy was proposed about two decades ago and has been continuously developed in the course of comparisons with experimental data. In a previous paper we investigated the adsorption of the globular protein β-lactoglobulin at the water/air interface and used such a model to analyze the experimental isotherms of the surface pressure, Π(c), and the frequency-, f-, dependent surface dilational viscoelasticity modulus, E(c)f, in a wide range of protein concentrations, c, and at pH 7. However, the best fit between theory and experiment proposed in that paper appeared incompatible with new data on the surface excess, Γ, obtained from direct measurements with neutron reflectometry. Therefore, in this work, the same model is simultaneously applied to a larger set of experimental dependences, e.g., Π(c), Γ(c), E(Π)f, etc., with E-values measured strictly in the linear viscoelasticity regime. Despite this ambitious complication, a best global fit was elaborated using a single set of parameter values, which well describes all experimental dependencies, thus corroborating the validity of the chosen thermodynamic model. Furthermore, we applied the model in the same manner to experimental results obtained at pH 3 and pH 5 in order to explain the well-pronounced effect of pH on the interfacial behavior of β-lactoglobulin. The results revealed that the propensity of β-lactoglobulin globules to unfold upon adsorption and stretch at the interface decreases in the order pH 3 > pH 7 > pH 5, i.e., with decreasing protein net charge. Finally, we discuss advantages and limitations in the current state of the model.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Irene Nepita ◽  
Rodolfo Repetto ◽  
Jan O. Pralits ◽  
Mario R. Romano ◽  
Francesca Ravera ◽  
...  

The present work is aimed at investigating the chemicophysical properties of the interface between silicone oils (SOs) used in vitreoretinal surgery and aqueous solutions, in the presence of surfactant biomolecules. Such molecules are thought to play an important role in the formation of SO emulsions in vitrectomised eyes, in which the natural vitreous body has been replaced with a SO. In particular, we have measured the interfacial tension (IT) and the interfacial dilational viscoelasticity (DV) of the interface between SO (Siluron 1000) and serum proteins (albumin and γ-globulins) at various concentrations in a Dulbecco alkaline buffer. The equilibrium IT value is relevant for the onset of emulsification, and the DV influences the stability of an emulsion, once formed. The study is complemented by preliminary emulsification tests. The experimental results show that, when proteins are dissolved in the aqueous solution, the rheological properties of the interface change. The IT decreases significantly for physiological protein concentrations, and the DV modulus achieves high values, even for small protein concentrations. The emulsification tests confirm that, in the presence of proteins, emulsions are stable on the time scale of months. We conclude that the measured values of IT in the presence of serum proteins are compatible with the promotion of droplet formation, which, in addition, are expected to be stable against coalescence. Adsorption of biomolecules at the interface with the SO is, therefore, likely to play an important role in the generation of an emulsion in eyes subjected to vitrectomy. These findings are relevant to identify strategies to avoid or control the formation of emulsions in eyes.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 397 ◽  
Author(s):  
Katarzyna Dziza ◽  
Eva Santini ◽  
Libero Liggieri ◽  
Ewelina Jarek ◽  
Marcel Krzan ◽  
...  

A comparative study is reported on the interfacial properties of a set of surfactants and is discussed in terms of the effects on the features of the corresponding oil-water emulsions. The surfactants are saponin, Tween 80 and citronellol glucoside (CG), while the oil is Miglyol 812N—A Medium Chain Triglyceride (MCT) oil. Due to their high biocompatibility, all these compounds are variously utilized in food, cosmetic or pharmaceutical products. Among the surfactants, which are all soluble in water, CG presents also an important solubility in oil, as shown by the measured partition coefficient. For these systems, dynamic and equilibrium interfacial tensions and dilational viscoelasticity are measured as a function of the surfactant concentration and analyzed according to available adsorption models. In order to compare these results with the time evolution of the corresponding emulsions, the actual surfactant concentration in the matrix phase of the emulsion is accounted for. This may differ significantly from the nominal concentration of the solutions before dispersing them, because of the huge area of droplets available for surfactant adsorption in the emulsion. Using this approach allows the derivation of the correlations between the observed emulsion behavior and the actual surfactant coverage of the droplet interface.


2019 ◽  
Vol 3 (4) ◽  
pp. 66 ◽  
Author(s):  
Giuseppe Loglio ◽  
Volodymyr I. Kovalchuk ◽  
Alexey G. Bykov ◽  
Michele Ferrari ◽  
Jürgen Krägel ◽  
...  

In this communication, the single element version of the fractional Maxwell model (single-FMM or Scott–Blair model) is adopted to quantify the observed behavior of the linear interfacial dilational viscoelasticity. This mathematical tool is applied to the results obtained by capillary pressure experiments under low-gravity conditions aboard the International Space Station, for adsorption layers at the hydrocarbon/water interface. Two specific experimental sets of steady-state harmonic oscillations of interfacial area are reported, respectively: a drop of pure water into a Span-80 surfactant/paraffin-oil matrix and a pure n-hexane drop into a C13DMPO/TTAB mixed surfactants/aqueous-solution matrix. The fractional constitutive single-FMM is demonstrated to embrace the standard Maxwell model (MM) and the Lucassen–van-den-Tempel model (L–vdT), as particular cases. The single-FMM adequately fits the Span-80/paraffin-oil observed results, correctly predicting the frequency dependence of the complex viscoelastic modulus and the inherent phase-shift angle. In contrast, the single-FMM appears as a scarcely adequate tool to fit the observed behavior of the mixed-adsorption surfactants for the C13DMPO/TTAB/aqueous solution matrix (despite the single-FMM satisfactorily comparing to the phenomenology of the sole complex viscoelastic modulus). Further speculations are envisaged in order to devise combined FMM as rational guidance to interpret the properties and the interfacial structure of complex mixed surfactant adsorption systems.


Langmuir ◽  
2018 ◽  
Vol 34 (23) ◽  
pp. 6678-6686 ◽  
Author(s):  
Valentin B. Fainerman ◽  
Volodymyr I. Kovalchuk ◽  
Eugene V. Aksenenko ◽  
Igor I. Zinkovych ◽  
Alexander V. Makievski ◽  
...  

2018 ◽  
Vol 296 (4) ◽  
pp. 781-798 ◽  
Author(s):  
Shusaku Ueno ◽  
Yuichi Takajo ◽  
Shunsuke Ikeda ◽  
Ryo Takemoto ◽  
Yosuke Imai ◽  
...  

Langmuir ◽  
2016 ◽  
Vol 32 (22) ◽  
pp. 5500-5509 ◽  
Author(s):  
V. B. Fainerman ◽  
V. I. Kovalchuk ◽  
E. V. Aksenenko ◽  
R. Miller

Sign in / Sign up

Export Citation Format

Share Document