scholarly journals Preparation of Biodegradable and Low-Cost Lignin-Based PVOH Carbon Fibers Prepared by Electrospinning

2021 ◽  
Vol 21 (6) ◽  
pp. 1463
Author(s):  
Amir Hamzah Siregar ◽  
Aditia Warman ◽  
Mahyuni Harahap ◽  
Grace Nainggolan ◽  
Dellyansyah Dellyansyah ◽  
...  

A polyvinyl alcohol (PVOH)/lignin nanofiber was prepared by the electrospinning method as a precursor for biodegradable and low-cost carbon fibers. PVOH 15% was dissolved in water, and various concentration of lignin (5, 10, 15, 20, and 25%) was added. The presence of lignin in PVOH solution increased the viscosity and conductivity. From SEM analysis, PVOH solution produced smooth fiber, whereas the addition of lignin produced fibers in bead forms. The presence of lignin above 20% in PVOH did not produce spun-fiber. FTIR analysis confirmed that lignin was able to form hydrogen bonds with PVOH. TGA analysis showed that PVOH/lignin nanofibers had the highest residual mass, i.e., 40% at 600 °C. The morphology of the carbon fibers showed flake forms with many pores and had 58.07% carbon content.

2019 ◽  
Author(s):  
Charlys Bezerra ◽  
Géssica Santos ◽  
Marilia Pupo ◽  
Maria Gomes ◽  
Ronaldo Silva ◽  
...  

<p>Electrochemical oxidation processes are promising solutions for wastewater treatment due to their high efficiency, easy control and versatility. Mixed metal oxides (MMO) anodes are particularly attractive due to their low cost and specific catalytic properties. Here, we propose an innovative thermal decomposition methodology using <a>polyvinyl alcohol (PVA)</a> as a solvent to prepare Ti/RuO<sub>2</sub>–IrO<sub>2</sub> anodes. Comparative anodes were prepared by conventional method employing a polymeric precursor solvent (Pechini method). The calcination temperatures studied were 300, 400 and 500 °C. The physical characterisation of all materials was performed by X-ray diffraction and scanning electron microscopy coupled with energy dispersive spectroscopy, while electrochemical characterisation was done by cyclic voltammetry, accelerated service lifetime and electrochemical impedance spectroscopy. Both RuO<sub>2</sub> and IrO<sub>2</sub> have rutile-type structures for all anodes. Rougher and more compact surfaces are formed for the anodes prepared using PVA. Amongst temperatures studied, 300 °C using PVA as solvent is the most suitable one to produce anodes with expressive increase in voltammetric charge (250%) and accelerated service lifetime (4.3 times longer) besides reducing charge-transfer resistance (8 times lower). Moreover, the electrocatalytic activity of the anodes synthesised with PVA toward the Reactive Blue 21 dye removal in chloride medium (100 % in 30 min) is higher than that prepared by Pechini method (60 min). Additionally, the removal total organic carbon point out improved mineralisation potential of PVA anodes. Finally, this study reports a novel methodology using PVA as solvent to synthesise Ti/RuO<sub>2</sub>–IrO<sub>2</sub> anodes with improved properties that can be further extended to synthesise other MMO compositions.</p>


Alloy Digest ◽  
2003 ◽  
Vol 52 (12) ◽  

Abstract Algoma AR225 is a carbon steel developed primarily to supply a low-cost material for high-abrasion applications. It is furnished in the form of as-rolled plate with a relatively high carbon content (0.35-0.45%). AR-225 is sold on the basis of chemical analysis only; the number 225 signifies the approximate Brinell hardness. On thicknesses one-half inch and over, this Brinell value may be lower than 225 because of higher finishing temperatures. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, machining, and joining. Filing Code: CS-138. Producer or source: Algoma Steel Corporation Ltd.


2020 ◽  
Vol 40 (5) ◽  
pp. 415-420 ◽  
Author(s):  
Yasin Altin ◽  
Hazal Yilmaz ◽  
Omer Faruk Unsal ◽  
Ayse Celik Bedeloglu

AbstractThe interfacial interaction between the fiber and matrix is the most important factor which influences the performance of the carbon fiber-epoxy composites. In this study, the graphitic surface of the carbon fibers was modified with graphene oxide nanomaterials by using a spray coating technique which is an easy, cheap, and quick method. The carbon fiber-reinforced epoxy matrix composites were prepared by hand layup technique using neat carbon fibers and 0.5, 1 and 2% by weight graphene oxide (GO) modified carbon fibers. As a result of SEM analysis, it was observed that GO particles were homogeneously coated on the surface of the carbon fibers. Furthermore, Young's modulus increased from 35.14 to 43.40 GPa, tensile strength increased from 436 to 672 MPa, and the elongation at break was maintained around 2% even in only 2% GO addition.


2019 ◽  
Vol 3 (2) ◽  
pp. 35 ◽  
Author(s):  
Miguel Reis Silva ◽  
António M. Pereira ◽  
Nuno Alves ◽  
Gonçalo Mateus ◽  
Artur Mateus ◽  
...  

This work presents an innovative system that allows the oriented deposition of continuous fibers or long fibers, pre-impregnated or not, in a thermoplastic matrix. This system is used in an integrated way with the filamentary fusion additive manufacturing technology and allows a localized and oriented reinforcement of polymer components for advanced engineering applications at a low cost. To demonstrate the capabilities of the developed system, composite components of thermoplastic matrix (polyamide) reinforced with pre-impregnated long carbon fiber (carbon + polyamide), 1 K and 3 K, were processed and their tensile and flexural strength evaluated. It was demonstrated that the tensile strength value depends on the density of carbon fibers present in the composite, and that with the passage of 2 to 4 layers of fibers, an increase in breaking strength was obtained of about 366% and 325% for the 3 K and 1 K yarns, respectively. The increase of the fiber yarn diameter leads to higher values of tensile strength of the composite. The obtained standard deviation reveals that the deposition process gives rise to components with anisotropic mechanical properties and the need to optimize the processing parameters, especially those that lead to an increase in adhesion between deposited layers.


2021 ◽  
Vol 879 ◽  
pp. 275-283
Author(s):  
Koay Mei Hyie ◽  
Salina Budin ◽  
Normariah Che Maideen ◽  
Yudi Rahmawan

Fasteners are commonly used in construction industry for parts joining purpose. There are many types of construction fasteners such as stud, bolt, anchor, nut, screw, and washer. The major problem of the fastener made by carbon steel is the poor resistance to corrosion. Electroplating is a simple yet low-cost tool to give a strong corrosion protection coating layer on the carbon steel. This study was performed to investigate the effect of current and deposition time on the iron triad (cobalt-nickel-iron) electroplating on the fastener washer. The experiment was conducted at 50 °C, pH 1-3 and at different electroplating time (30 minutes to 90 minutes) and current (0.2 A to 0.5 A). Burnt-out surface coating was observed on the fastener washer when the current was more than 0.4 A. A field test was carried out for 60 days to observe the corrosion behavior and performance of the products. Scanning electron microscope (SEM) analysis showed that a thin protection layer with 5.64 µm was formed at 60 minutes of electroplating time and 0.4 A of current. The surface roughness of the fastener washer was increased by increasing the electroplating time and current. The hardness was also improved with higher current and electroplating time if compared to the original fastener washer. The result of this study confirmed that a strong adhesive corrosion resistant layer to the fastener washer was using the current of 0.4 A (77 mA/cm2) and the electroplating time of 60 minutes.


2020 ◽  
Vol 15 (4) ◽  
Author(s):  
Mahesh Mallampati ◽  
Sreekanth Mandalapu ◽  
Govidarajulu C

The composite materials are replacing the traditional materials because oftheir superior properties such as high tensile strength, low thermal expansion, high strength to weight ratio, low cost, lightweight, high specific modulus, renewability and biodegradability which are the most basic & common attractive features of composites that make them useful for industrial applications. The developments of new materials are on the anvil and are growing day by day. The efforts to produce economically attractive composite components have resulted in several innovative manufacturing techniques currently being used in the composites industry. Generally, composites consist of mainly two phases i.e., matrix and fiber. In this study, woven roving mats (E-glass fiber orientation (-45°/45°,0°/90°, - 45°/45°),UD450GSM)were cut in measured dimensions and a mixture of Epoxy Resin (EPOFINE-556, Density-1.15gm/cm3), Hardener (FINE HARDTM 951, Density- 0.94 gm/cm3) and Acetone [(CH3)2CO, M= 38.08 g/mol] was used to manufacture the glass fiber reinforced epoxy composite by hand lay-up method. Mechanical properties such as tensile strength, SEM analysis, hardness test, density tests are evaluated.


2018 ◽  
Vol 31 (4) ◽  
pp. 569-574
Author(s):  
Sho Fujisawa ◽  
Masumi Yamamoto ◽  
Daiki Kashiwai ◽  
Pedram Azari ◽  
Ying Ying Khaw ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document