scholarly journals Cytotoxic Activity, and Molecular Docking of Indole Alkaloid Voacangine and Bisindole Alkaloid Vobtusine, Vobtusine Lactone from the Indonesian Plant: Voacanga foetida (Blume) Rolfe

2021 ◽  
pp. 442-443
Author(s):  
Adriani Susanty

ABSTRACT The purpose of this study was to isolate and test its cytotoxic activity starting from extract fraction and its isolate compound, then carried out molecular docking to confirm the potential biological activity of ligands (vocangine, vobtusine, and vobtusine lactone) against inhibition proteins (Bcl-2, Bcl-xL, and Mcl-1), activation protein Bax and activation of apoptotic execution protein Caspase-3. This research is an experimental quantitative study using column chromatography and HPLC methods in the isolation process, MTT assay in determining the cytotoxic activity, and molecular docking in determining the prediction of apoptotic mechanism. The cytotoxic activity of VFB-DA, VFB-DB, VFB-BuOH, VFB-DB4 fractions, voacangine compounds, vobtusine are very strong. while vobtusine lactone is moderate cytotoxic activity. The docking score for voacangine, vobtusine, and vobtusine lactone compounds against Bcl-2 is -9.93; -10.07; -9.03 kcal/mol, against Bcl-xl is -9.77; -11.69; -9.76 kcal/mol, against Mcl-1 is -10.70; -10.77; -9.53 kcal/mol, and for Bax is -8.99; -6.87; -6.99 kcal/mol, as well as against caspase3 is -12.05; -12.21; -12.02 kcal/mol. The cytotoxic activity of voacangine, vobtusine, and vobtusine lactone compounds is thought to cause cell death by suppressing Bcl-2 activity; Bcl-xl; and Mcl-1, increased Bax activity and increased caspase3 activity.   Key words: Voacanga foetida, in vitro, in silico

Author(s):  
Morganna C. Lima ◽  
Elisa A. N. Azevedo ◽  
Clarice N. L. de Morais ◽  
Larissa I. O. de Sousa ◽  
Bruno M. Carvalho ◽  
...  

Background: Zika virus is an emerging arbovirus of global importance. ZIKV infection is associated with a range of neurological complications such as the Congenital Zika Syndrome and Guillain Barré Syndrome. Despite the magnitude of recent outbreaks, there is no specific therapy to prevent or to alleviate disease pathology. Objective: To investigate the role of P-MAPA immunomodulator in Zika-infected THP-1 cells. Methods: THP-1 cells were subjected at Zika virus infection (Multiplicity of Infection = 0.5) followed by treatment with P-MAPA for until 96 hours post-infection. After that, the cell death was analyzed by annexin+/ PI+ and caspase 3/ 7+ staining by flow cytometry. In addition, the virus replication and cell proliferation were accessed by RT-qPCR and Ki67 staining, respectively. Results: We demonstrate that P-MAPA in vitro treatment significantly reduces Zika virus-induced cell death and caspase-3/7 activation on THP-1 infected cells, albeit it has no role in virus replication and cell proliferation. Conclusions: Our study reveals that P-MAPA seems to be a satisfactory alternative to inhibits the effects of Zika virus infection in mammalian cells.


2004 ◽  
Vol 287 (4) ◽  
pp. H1730-H1739 ◽  
Author(s):  
Ron Zohar ◽  
Baoqian Zhu ◽  
Peter Liu ◽  
Jaro Sodek ◽  
C. A. McCulloch

Reperfusion-induced oxidative injury to the myocardium promotes activation and proliferation of cardiac fibroblasts and repair by scar formation. Osteopontin (OPN) is a proinflammatory cytokine that is upregulated after reperfusion. To determine whether OPN enhances fibroblast survival after exposure to oxidants, cardiac fibroblasts from wild-type (WT) or OPN-null (OPN−/−) mice were treated in vitro with H2O2to model reperfusion injury. Within 1 h, membrane permeability to propidium iodide (PI) was increased from 5 to 60% in OPN−/−cells but was increased to only 20% in WT cells. In contrast, after 1–8 h of treatment with H2O2, the percent of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-stained cells was more than twofold higher in WT than OPN−/−cells. Electron microscopy of WT cells treated with H2O2showed chromatin condensation, nuclear fragmentation, and cytoplasmic and nuclear shrinkage, which are consistent with apoptosis. In contrast, H2O2-treated OPN−/−cardiac fibroblasts exhibited cell and nuclear swelling and membrane disruption that are indicative of cell necrosis. Treatment of OPN−/−and WT cells with a cell-permeable caspase-3 inhibitor reduced the percentage of TUNEL staining by more than fourfold in WT cells but decreased staining in OPN−/−cells by ∼30%. Although the percentage of PI-permeable WT cells was reduced threefold, the percent of PI-permeable OPN−/−cells was not altered. Restoration of OPN expression in OPN−/−fibroblasts reduced the percentage of PI-permeable cells but not TUNEL staining after H2O2treatment. Thus H2O2-induced cell death in OPN-deficient cardiac fibroblasts is mediated by a caspase-3-independent, necrotic pathway. We suggest that the increased expression of OPN in the myocardium after reperfusion may promote fibrosis by protecting cardiac fibroblasts from cell death.


2003 ◽  
Vol 285 (5) ◽  
pp. H2218-H2224 ◽  
Author(s):  
R. Nijmeijer ◽  
M. Willemsen ◽  
C. J. L. M. Meijer ◽  
C. A. Visser ◽  
R. H. Verheijen ◽  
...  

Type II secretory phospholipase A2 (sPLA2) is a cardiovascular risk factor. We recently found depositions of sPLA2 in the necrotic center of infarcted human myocardium and normally appearing cardiomyocytes adjacent to the border zone. The consequences of binding of sPLA2 to ischemic cardiomyocytes are not known. To explore a potential effect of sPLA2 on ischemic cardiomyocytes at a cellular level we used an in vitro model. The cardiomyocyte cell line H9c2 or adult cardiomyocytes were isolated from rabbits that were incubated with sPLA2 in the presence of metabolic inhibitors to mimic ischemia-reperfusion conditions. Cell viability was established with the use of annexin V and propidium iodide or 7-aminoactinomycin D. Metabolic inhibition induced an increase of the number of flip-flopped cells, including a population that did not stain with propidium iodide and that was caspase-3 negative. sPLA2 bound to the flip-flopped cells, including those negative for caspase-3. sPLA2 binding induced cell death in these latter cells. In addition, sPLA2 potentiated the binding of C-reactive protein (CRP) to these cells. We conclude that by binding to flip-flopped cardiomyocytes, including those that are caspase-3 negative and presumably reversibly injured, sPLA2 may induce cell death and tag these cells with CRP.


2002 ◽  
Vol 83 (12) ◽  
pp. 3153-3161 ◽  
Author(s):  
R. Duval ◽  
V. Bellet ◽  
S. Delebassée ◽  
C. Bosgiraud

Maedi–visna virus (MVV) causes encephalitis, pneumonia and arthritis in sheep. In vitro, MVV infection and replication lead to strong cytopathic effects characterized by syncytia formation and subsequent cellular lysis. It was demonstrated previously that MVV infection in vitro induces cell death of sheep choroid plexus cells (SCPC) by a mechanism that can be associated with apoptotic cell death. Here, the relative implication of several caspases during acute infection with MVV is investigated by employing diverse in vitro and in situ strategies. It was demonstrated using specific pairs of caspase substrates and inhibitors that, during in vitro infection of SCPC by MVV, the two major pathways of caspase activation (i.e. intrinsic and extrinsic pathways) were stimulated: significant caspase-9 and -8 activities, as well as caspase-3 activity, were detected. To study the role of caspases during MVV infection in vitro, specific, cell-permeable, caspase inhibitors were used. First, these results showed that both z-DEVD-FMK (a potent inhibitor of caspase-3-like activities) and z-VAD-FMK (a broad spectrum caspase inhibitor) inhibit caspase-9, -8 and -3 activities. Second, both irreversible caspase inhibitors, z-DEVD-FMK and z-VAD-FMK, delayed MVV-induced cellular lysis as well as virus growth. Third, during SCPC in vitro infection by MVV, cells were positively stained with FITC-VAD-FMK, a probe that specifically stains cells containing active caspases. In conclusion, these data suggest that MVV infection in vitro induces SCPC cell death by a mechanism that is strongly dependent on active caspases.


2021 ◽  
Vol 14 ◽  
Author(s):  
Marwa M. Khalaf ◽  
Emad H.M. Hassanein ◽  
Abdel-Gawad S. Shalkami ◽  
Ramadan A.M. Hemeida ◽  
Wafaa R. Mohamed

Background: Methotrexate (MTX) is used potently for a wide range of diseases. However, hepatic intoxication by MTX hinders its clinical use. Objectives: The present study was conducted to investigate the diallyl disulfide (DADS) ability to ameliorate MTX-induced hepatotoxicity. Methods: Thirty-two rats were randomly divided into four groups: normal control, DADS (50 mg/kg/day, orally), MTX (single i.p. injection of 20 mg/kg) and DADS+MTX. Liver function biomarkers, histopathological examinations, oxidative stress, inflammation, and apoptosis biomarkers were investigated. Besides, an in vitro cytotoxic activity study was conducted to explore the modulatory effects of DADS on MTX cytotoxic activity using Caco-2, MCF-7, and HepG2 cells. Results: DADS significantly reduced the increased serum activities of ALT, AST, ALP, and LDH. These results were confirmed by the alleviation of liver histopathological changes. It restored the decreased GSH content and SOD activity, while significantly decreased MTX-induced elevations in both MDA and NO2- contents. The hepatoprotective effects were mechanistically mediated through the up-regulation of hepatic Nrf-2 and the down-regulation of Keap-1, P38MAPK, and NF-κB expression levels. In addition, an increase in Bcl-2 level with a decrease in the expression of both Bax and caspase-3 was observed. The in vitro study showed that DADS increased MTX anti-tumor efficacy. Conclusions: DADS potently alleviated MTX-induced hepatotoxicity through the modulation of Keap-1/Nrf-2, P38MAPK/NF-κB and apoptosis signaling pathways and effectively enhanced the MTX cytotoxic effects, which could be promising for further clinical trials.


Polyhedron ◽  
2021 ◽  
Vol 210 ◽  
pp. 115498
Author(s):  
Ignacio del Águila ◽  
M. Antonia Mendiola ◽  
Sayantan Pradhan ◽  
Chittaranjan Sinha ◽  
Elena López-Torres

2009 ◽  
Vol 37 (2) ◽  
pp. 209-218 ◽  
Author(s):  
Mathieu Vinken ◽  
Elke Decrock ◽  
Elke De Vuyst ◽  
Luc Leybaert ◽  
Tamara Vanhaecke ◽  
...  

This study was set up to critically evaluate a commonly-used in vitro model of hepatocellular apoptotic cell death, in which freshly isolated hepatocytes, cultured in a monolayer configuration, are exposed to a combination of Fas ligand and cycloheximide for six hours. A set of well-acknowledged cell death markers was addressed: a) cell morphology was studied by light microscopy; b) apoptotic and necrotic cell populations were quantified by in situ staining with Annexin-V, Hoechst 33342 and propidium iodide (PI); c) apoptotic and necrotic activities were monitored by probing caspase 3-like activity and measuring the extracellular leakage of lactate dehydrogenase (LDH), respectively; and d) the expression of apoptosis regulators was investigated by immunoblotting. The initiation of apoptosis was evidenced by the activation of caspase 8 and caspase 9, and increased Annexin-V reactivity. Progression through the apoptotic process was confirmed by the activation of caspase 3 and Bid, the enhanced expression of Bax, and the occurrence of nuclear fragmentation. Late transition to a necrotic appearance was demonstrated by an increased number of PI-positive cells and augmented extracellular release of LDH. Thus, the in vitro model allows the study of the entire course of Fas-mediated hepatocellular apoptotic cell death, which is not possible in vivo. This experimental system can serve a broad range of in vitro pharmaco-toxicological purposes, thereby directly assisting in the reduction of animal experimentation.


2019 ◽  
Vol 59 ◽  
pp. 187-196 ◽  
Author(s):  
Janet Olayemi Olugbodi ◽  
Marius Belmondo Tincho ◽  
Oluwafemi O. Oguntibeju ◽  
Mary Tolulope Olaleye ◽  
Afolabi Clement Akinmoladun

2018 ◽  
Vol 29 (2) ◽  
pp. 92-96
Author(s):  
Amina S. Yusuf ◽  
Ibrahim Sada ◽  
Yusuf Hassan ◽  
Temitope O. Olomola ◽  
Christiana M. Adeyemi ◽  
...  

Abstract The synthesis of five monocarbonyl analogues of curcumin is described. In vitro anti-malarial assay of the compounds was carried out and the effect of the substituents on the aryl ring has been described. The results show that all the five compounds exhibited some reasonable activity against the chloroquine-resistant plasmodium parasite. Molecular docking studies further confirmed the observed biological activity of the compounds.


Sign in / Sign up

Export Citation Format

Share Document