scholarly journals THE METABOLITE FINGERPRINTS, ANTIMALARIAL ACTIVITIES AND TOXICITIES OF ARTOCARPUS CHAMPEDEN STEMBARK FROM VARIOUS REGIONS IN INDONESIA

2021 ◽  
pp. 503-513
Author(s):  
Imam Taufik ◽  
Aty Widyawaruyanti ◽  
Mochammad Yuwono

In Indonesia, cempedak (Artocarpus champeden Spreng) stembark from family of moraceae had been traditionally used for malarial treatment. Difference in the location of growth could cause the difference of metabolite fingerprints. As a result, there might be different toxicity and antimalarial activity in the same plants. The goal of this study was to obtain the fingerprints of the metabolites found in A. champeden stembark from different parts of Indonesia in order to authenticate and control the extract's quality. Fingerprints were performed using the HPTLC-Densitometry technique, in vitro toxicity and antimalarial activity were also determined using MTT assay and HRP2 assay. The correlation between metabolite fingerprints, toxicity and antimalarial activity was analysed using chemometrics tools: Principle Component Analysis (PCA), Partial Least Square (PLS) and Hierarchical Clustering Analysis (HCA). As a result, there is significant difference between fingerprints and toxicity profiles of A. champeden (p<0.05), whereas for antimalarial profiles, there is no significant difference between of them (p>0.05). Meanwhile, the nutrients (copper, zinc and manganese) are suspected to be responsible for the metabolite content. Besides morachalcone-A, compounds with Rf values ​​of 0.66 and 0.63 can be proposed as additional markers because they have responsibility for antimalarial activity and toxicity.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Huan-Hua Xu ◽  
Zhen-Hong Jiang ◽  
Cong-Shu Huang ◽  
Yu-Ting Sun ◽  
Long-Long Xu ◽  
...  

Abstract Background OPD and OPD' are the two main active components of Ophiopogon japonicas in Shenmai injection (SMI). Being isomers of each other, they are supposed to have similar pharmacological activities, but the actual situation is complicated. The difference of hemolytic behavior between OPD and OPD' in vivo and in vitro was discovered and reported by our group for the first time. In vitro, only OPD' showed hemolysis reaction, while in vivo, both OPD and OPD' caused hemolysis. In vitro, the primary cause of hemolysis has been confirmed to be related to the difference between physical and chemical properties of OPD and OPD'. In vivo, although there is a possible explanation for this phenomenon, the one is that OPD is bio-transformed into OPD' or its analogues in vivo, the other one is that both OPD and OPD' were metabolized into more activated forms for hemolysis. However, the mechanism of hemolysis in vivo is still unclear, especially the existing literature are still difficult to explain why OPD shows the inconsistent hemolysis behavior in vivo and in vitro. Therefore, the study of hemolysis of OPD and OPD' in vivo is of great practical significance in response to the increase of adverse events of SMI. Methods Aiming at the hemolysis in vivo, this manuscript adopted untargeted metabolomics and lipidomics technology to preliminarily explore the changes of plasma metabolites and lipids of OPD- and OPD'-treated rats. Metabolomics and lipidomics analyses were performed on ultra-high performance liquid chromatography (UPLC) system tandem with different mass spectrometers (MS) and different columns respectively. Multivariate statistical approaches such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to screen the differential metabolites and lipids. Results Both OPD and OPD' groups experienced hemolysis, Changes in endogenous differential metabolites and differential lipids, enrichment of differential metabolic pathways, and correlation analysis of differential metabolites and lipids all indicated that the causes of hemolysis by OPD and OPD' were closely related to the interference of phospholipid metabolism. Conclusions This study provided a comprehensive description of metabolomics and lipidomics changes between OPD- and OPD'-treated rats, it would add to the knowledge base of the field, which also provided scientific guidance for the subsequent mechanism research. However, the underlying mechanism require further research.


Author(s):  
Murilo Batista Abud ◽  
Ricardo Noguera Louzada ◽  
David Leonardo Cruvinel Isaac ◽  
Leonardo Gomes Souza ◽  
Ricardo Gomes dos Reis ◽  
...  

Abstract Background To evaluate the in vivo and in vitro toxicity of a new formulation of liposome-encapsulated sirolimus (LES). Methods In vitro experiments were done using ARPE-19 and HRP cells. An MTT assay was used to determine cell metabolic activity and a TUNEL assay for detecting DNA fragmentation. In vivo experiments were conducted on New Zealand albino rabbits that received intravitreal injections of empty liposomes (EL) or different concentrations of LES. Histopathological and immunohistochemical analyses were performed on the rabbit’s eyes following injection. Results Eighteen eyes of nine rabbits were used. MTT assay cell viability was 95.04% in group 1 (12.5 µL/mL LES). 92.95% in group 2 (25 µL/mL LES), 91.59% in group 3 (50 µL/mL LES), 98.09% in group 4 (12.5 µL/mL EL), 95.20% on group 5 (50 µL/mL EL), 98.53% in group 6 (50 µL/mL EL), and 2.84% on group 8 (50 µL/mL DMSO). There was no statistically significant difference among groups 1 to 7 in cell viability (p = 1.0), but the comparison of all groups with group 8 was significant (p < 0.0001). The TUNEL assay comparing two groups was not statistically significant from groups 1 to 7 (p = 1.0). The difference between groups 1 to 7 and group 8 (p < 0.0001) was significant. Histopathological changes were not found in any group. No activation of Müller cells was detected. Conclusion A novel formulation of LES delivered intravitreally did not cause in vitro toxicity, as evaluated by MTT and TUNEL assays, nor in vivo toxicity as evaluated by histopathology and immunohistochemistry in rabbit eyes.


2020 ◽  
Author(s):  
Xu Huan-Hua ◽  
Zhen-Hong Jiang ◽  
Cong-Shu Huang ◽  
Yu-Ting Sun ◽  
Long-Long Xu ◽  
...  

Abstract Background: OPD and OPD' are the two main active components of Ophiopogon japonicas in Shenmai injection (SMI). Being isomers of each other, they are supposed to have similar pharmacological activities, but the actual situation is complicated. The difference of hemolytic behavior between OPD and OPD' in vivo and in vitro was discovered and reported by our group for the first time. In vitro, only OPD' showed hemolysis reaction, while in vivo, both OPD and OPD' caused hemolysis. The primary cause of hemolysis in vitro has been confirmed to be related to the difference between physical and chemical properties of OPD and OPD', but the mechanism of hemolysis in vivo is still unclear, especially the existing research are still difficult to explain why OPD shows the inconsistent hemolysis behavior in vivo and in vitro. Therefore, the study of hemolysis of OPD and OPD' in vivo is of great practical significance in response to the increase of adverse events of SMI.Methods: Aiming at the hemolysis in vivo, this manuscript adopted untargeted metabolomics and lipidomics technology to preliminarily explore the changes of plasma metabolites and lipids of OPD- and OPD'-treated rats. Metabolomics and lipidomics analyses were performed on ultra-high performance liquid chromatography (UPLC) system tandem with different mass spectrometers (MS) and different columns respectively. Multivariate statistical approaches such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to screen the differential metabolites and lipids.Results: Both OPD and OPD' groups experienced hemolysis, Changes in endogenous differential metabolites and differential lipids, enrichment of differential metabolic pathways, and correlation analysis of differential metabolites and lipids all indicated that the causes of hemolysis by OPD and OPD' were closely related to the interference of phospholipid metabolism.Conclusions: This study confirmed that interference of phospholipid metabolism was the main cause of hemolysis of OPD and OPD'. This study provided a comprehensive description of metabolome and lipidomic changes under the condition of hemolysis which caused by OPD and OPD'. It can also provide clues for research on the hemolysis mechanism of traditional Chinese medicine.


2020 ◽  
Author(s):  
Xu Huan-Hua ◽  
Zhen-Hong Jiang ◽  
Cong-Shu Huang ◽  
Yu-Ting Sun ◽  
Long-Long Xu ◽  
...  

Abstract Background OPD and OPD’ are the two main active monomers of Ophiopogon japonicus in Shenmai injection, being isomers of each other with the same chemical formula and similar chemical structure. According to common sense, they are supposed to have similar pharmacological activities, but the actual situation is exactly the opposite. The difference of distinct hemolytic behavior between OPD and OPD’ in vivo and in vitro was discovered and reported by our group for the first time. In the hemolysis experiment in vitro, only OPD’ showed hemolysis reaction, while in vivo, both OPD and OPD’ revealed hemolysis reaction. The primary cause of hemolysis in vitro has been confirmed to be related to the difference between physical and chemical properties of OPD and OPD’, but the mechanism of hemolysis in vivo is still unclear, especially the existing research are still difficult to explain why OPD shows the inconsistent hemolysis behavior in vivo and in vitro. However, the detection of hemolysis of OPD and OPD’ in vivo is of great practical significance in response to the increase of adverse events of Shenmai injection. Methods Aiming at the phenomenon of hemolysis in vivo, this paper adopted untargeted metabolomics and lipidomics technology to preliminarily explore the changes of plasma metabolites and lipids of OPD and OPD’ in vivo during the occurrence of hemolysis. Metabolomics and lipidomics analysis was performed on ultra-high performance liquid chromatography (UPLC) system tandem with different mass spectrometer and different columns respectively. Multivariate statistical approaches such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to screen the differential metabolites and lipids. Results Both OPD and OPD’ groups experienced hemolysis, Changes in endogenous differential metabolites and differential lipids, enrichment of differential metabolic pathways, and correlation analysis of differential metabolites and lipids all indicated that the causes of hemolysis by OPD and OPD’ were closely related to the interference of phospholipid metabolism. Conclusions This study provided a comprehensive description of metabolomics and lipidomic changes between OPD and OPD’ treated rats, which also provided scientific guidance for the subsequent mechanism research, and the underlying mechanism require further research.


2020 ◽  
Author(s):  
Xu Huan-Hua ◽  
Zhen-Hong Jiang ◽  
Cong-Shu Huang ◽  
Yu-Ting Sun ◽  
Long-Long Xu ◽  
...  

Abstract Background: OPD and OPD' are the two main active components of Ophiopogon japonicas in Shenmai injection (SMI). Being isomers of each other, they are supposed to have similar pharmacological activities, but the actual situation is complicated. The difference of hemolytic behavior between OPD and OPD' in vivo and in vitro was discovered and reported by our group for the first time. In vitro, only OPD' showed hemolysis reaction, while in vivo, both OPD and OPD' caused hemolysis. In vitro, the primary cause of hemolysis has been confirmed to be related to the difference between physical and chemical properties of OPD and OPD'. In vivo, although there is a possible explanation for this phenomenon, the one is that OPD is bio-transformed into OPD' or its analogues in vivo, the other one is that both OPD and OPD' were metabolized into more activated forms for hemolysis. However, the mechanism of hemolysis in vivo is still unclear, especially the existing literature are still difficult to explain why OPD shows the inconsistent hemolysis behavior in vivo and in vitro. Therefore, the study of hemolysis of OPD and OPD' in vivo is of great practical significance in response to the increase of adverse events of SMI.Methods: Aiming at the hemolysis in vivo, this manuscript adopted untargeted metabolomics and lipidomics technology to preliminarily explore the changes of plasma metabolites and lipids of OPD- and OPD'-treated rats. Metabolomics and lipidomics analyses were performed on ultra-high performance liquid chromatography (UPLC) system tandem with different mass spectrometers (MS) and different columns respectively. Multivariate statistical approaches such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to screen the differential metabolites and lipids.Results: Both OPD and OPD' groups experienced hemolysis, Changes in endogenous differential metabolites and differential lipids, enrichment of differential metabolic pathways, and correlation analysis of differential metabolites and lipids all indicated that the causes of hemolysis by OPD and OPD' were closely related to the interference of phospholipid metabolism.Conclusions: This study provided a comprehensive description of metabolomics and lipidomics changes between OPD- and OPD'-treated rats, it would add to the knowledge base of the field, which also provided scientific guidance for the subsequent mechanism research. However, the underlying mechanism require further research.


Author(s):  
Eisha Imran ◽  
Faisal Moeen ◽  
Beenish Abbas ◽  
Bakhtawar Yaqoob ◽  
Mehreen Wajahat ◽  
...  

Abstract Objectives The study aimed to evaluate and compare various commercially available local anesthetic solutions. Materials and Methods A total of 150 commercially available local anesthetic cartridges of similar composition (2% lidocaine with epinephrine 1:100,000) were randomly collected and divided into 3 groups. The designations of groups were selected from their product names such that each group consisted of 60 cartridges. Group S (Septodont, France) Group M (Medicaine, Korea) and Group H (HD-Caine, Pakistan). The samples were divided into five sub-groups, each consisting of 10 cartridges from each group to investigate each parameter. Results The acquired data was statistically analyzed and compared (using SPSS version 12). Compositional analysis revealed a non-significant (P>0.05) difference when the three Groups were compared with standard lidocaine and epinephrine solutions. The mean pH values of samples from group S, M and H respectively fell within the range of pH values of commercially available solutions. Non-significant difference in EPT values of Group S and H was found when efficacy was compared (p = 0.3), however a significant difference (p < 0.01) was observed in contrast to Group M. Anti-bacterial activity was observed in all the group and a non-significant difference in cell viability values of Group S and M was found (p = 0.6), while the difference was significant in comparison to Group H. Conclusion Within the limitations of these investigations, it appears that the properties of different manufacturers fall within the recommended ranges as mentioned in literature and do not appear to be statistically different in the variables we have tested.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2195
Author(s):  
Lucas de Paula Corrêdo ◽  
Leonardo Felipe Maldaner ◽  
Helizani Couto Bazame ◽  
José Paulo Molin

Proximal sensing for assessing sugarcane quality information during harvest can be affected by various factors, including the type of sample preparation. The objective of this study was to determine the best sugarcane sample type and analyze the spectral response for the prediction of quality parameters of sugarcane from visible and near-infrared (vis-NIR) spectroscopy. The sampling and spectral data acquisition were performed during the analysis of samples by conventional methods in a sugar mill laboratory. Samples of billets were collected and four modes of scanning and sample preparation were evaluated: outer-surface (‘skin’) (SS), cross-sectional scanning (CSS), defibrated cane (DF), and raw juice (RJ) to analyze the parameters soluble solids content (Brix), saccharose (Pol), fibre, pol of cane and total recoverable sugars (TRS). Predictive models based on Partial Least Square Regression (PLSR) were built with the vis-NIR spectral measurements. There was no significant difference (p-value > 0.05) between the accuracy SS and CSS samples compared to DF and RJ samples for all prediction models. However, DF samples presented the best predictive performance values for the main sugarcane quality parameters, and required only minimal sample preparation. The results contribute to advancing the development of on-board quality monitoring in sugarcane, indicating better sampling strategies.


2018 ◽  
Vol 9 (4) ◽  
pp. 400-407 ◽  
Author(s):  
Selvia Maged Adly ◽  
Maha Mohamed Abdelrahman ◽  
Nada Sayed Abdelwahab ◽  
Nourudin Wageh Ali

In this work, multivariate calibration models and TLC-densitometric methods have been developed and validated for quantitative determination of olmesartan medoxomil (OLM) and hydrochlorothiazide (HCZ) in presence of their degradation products, olmesartan (OL) and salamide (SAL), respectively. In the first method, multivariate calibration models including principal component regression (PCR) and partial least square (PLS) were applied. The wavelength range 210-343 nm was used and data was auto-scaled and mean centered as pre-processing steps for PCR and PLS models, respectively. These models were tested by application to external validation set with mean percentage recoveries 99.78, 100.01, 100.41 and 100.46% for OLM, HCZ, OL and SAL, respectively, for PLS model and also, 100.22, 100.40, 102.25 and 100.13% for them, respectively, for PCR model. The second method is TLC-densitometry at which the chromatographic separation was carried out using silica gel 60F254 TLC plates and the developing system consisted of a mixture of ethyl acetate:chloroform:methanol: formic acid:tri-ethylamine (60:40:4:4:1, by volume) with UV-scanning at 254 nm. The developed methods were successfully applied for determination of OLM and HCZ in their pharmaceutical dosage form. Also, statistical comparison was made between the developed methods and the reported method using student’s-t test and F-test and results showed that there was no significant difference between them concerning both accuracy and precision.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ya You ◽  
Zijin Xu ◽  
Qingrou Zhong ◽  
Lin Zhu ◽  
Susu Lin ◽  
...  

Crocus sativus L. is commonly used as functional food and medicinal herb in traditional Chinese medicine. In this study, the spectrum–effect relationship was established between HPLC fingerprints and in vitro antioxidant activity of saffron to improve the quality evaluation method of saffron. The fingerprints of 21 batches of saffron collected from different regions were assessed, and the data were further analyzed by chemometric methods, including similarity analysis, hierarchical clustering analysis, principal component analysis, and orthogonal partial least squares discriminant analysis. The spectrum–effect relationship between fingerprints and antioxidant effect of saffron was analyzed by grey relational analysis and partial least square methods to figure out the antioxidant component of saffron. Thirteen common peaks of 21 batches of saffron were included in the analysis, and peak 3 (picrocrocin), peak 7 (crocin I), and peak 10 (crocin II) were identified as the main active components responsible for antioxidant efficacy. Besides, a multi-index quality control method was developed for simultaneous determination of these three antioxidant components in saffron. Taken together, this study provided new strategies for the quality control and the development of new bioactive products of saffron in the future.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Gollshang Ahmad Mhammed Dalloo ◽  
Bestoon Mohammed Faraj ◽  
Abdulsalam Rasheed Al-Zahawi

Purpose. This study evaluates the effect of bleaching before or after veneer preparation and the depth of preparation on color masking ability of laminate veneers. Methods. Sixty extracted premolars were artificially stained to vita shade A4, verified by digital spectrophotometer (Vita Easy Shade V), and then divided into three groups: NB = nonbleached , BBP = bleaching before preparation, and BAP = bleaching after preparation. Based on the preparation depths, each group was further divided into two subgroups: S 1 = 0.5   mm and S 2 = 1.0   mm . BBP and BAP were subjected to one session of in-office bleaching using 35% hydrogen peroxide. IPS e-max CAD veneers of 0.5 and 1.0 mm thickness (corresponding to the preparation depths) of the same shade and translucency (HT A1) were cemented immediately to the bleached surfaces. Immediately after cementation, the color change Δ E between the baseline (after staining) and the resulted shades was measured using the Vita Easy Shade V digital spectrophotometer and CIELab color system. Results. Bleached groups exhibited a significant Δ E value compared to the nonbleached group ( p < 0.05 ). BAP showed the highest Δ E value. No significant difference was found between BBP and BAP. S2 revealed a significant Δ E value than S1 ( p < 0.05 ). No significant difference was found between S1of BAP and S2 of NB, BBP, and BAP ( p > 0.05 ). Regarding the color coordinates, the difference between the tested groups was highly significant in lightness ( Δ L ∗ ) ( p < 0.001 ), while no significant differences were found in green/red value ( Δ a ∗ ) and yellow/blue value ( Δ b ∗ ) ( p > 0.05 ). Conclusions. In cases of severe tooth discoloration, one session of in-office bleaching before or after veneer preparation and the preparation depth do not influence the color masking ability of laminate veneers.


Sign in / Sign up

Export Citation Format

Share Document