scholarly journals Strength Properties of Untreated Coal Bottom Ash as Cement Replacement

2020 ◽  
Vol 6 (1) ◽  
pp. 13 ◽  
Author(s):  
Noraziela Syahira Baco ◽  
Shahiron Shahidan ◽  
Sharifah Salwa Mohd Zuki ◽  
Noorwirdawati Ali ◽  
Mohamad Azim Mohammad Azmi

Coal Bottom Ash (CBA) is a mineral by-product of thermal power plants obtained from the combustion of coal. In many countries, CBA wastes are identified as hazardous materials. The utilization of CBA can help in alleviating environmental problems; thus, this research was carried out to explore the possibility of its use as cement replacement in concrete manufacturing. Presently, In Malaysia, research that concerns about the use of CBA as cement replacement is very limited. Therefore, this study was aimed to investigate the properties of CBA as cement replacement and to identify the optimum percentage of untreated CBA as cement replacement. The CBA used in this study were taken from the Tanjung Bin power plant. In this research, the amount of CBA in the concrete mixture varied from 20% to 40% to replace cement. The properties of concrete containing CBA as cement replacement was examined through slump test, sieve analysis, concrete compressive strength test and splitting tensile strength test. The compressive strength test and splitting tensile strength test were performed at 7 and 28 days of curing time. Based on this research, it can be concluded that the optimum percentage of CBA as cement replacement is 25% for a curing time of both 7 and 28 days with the concrete compression strength of 45.2 MPa and 54.6 MPa, respectively. Besides, the optimum percentage for tensile strength is also at 25% CBA for a curing period of both 7 and 28 days with the tensile strength of 2.91 MPa and 3.28 MPa, respectively. 

The addition of fiber in the concrete mixture has proven to increase the tensile strength of concrete for non-structural purposes. Natural materials and easily obtainable can be generally used for non – structural purposes. This study was aimed to investigate the effect of roving fiber addition on the compressive and tensile strength of the no-fines concrete. The results of this study were expected to be an input for the society, especially for the construction materials industry, and can be useful for further research. The test specimens used in this study, for each type of variable, were 3 cylinders for compressive strength test and 3 cylinders for tensile strength test. The volume ratio between the cement and gravel on the mixture was as follows: 1: 5, 1: 6, 1: 7, 1:8, 1: 9. In addition, the length of the roving fibers used in this study was 3 cm. The addition of roving fibers of each mixture was 0%, 2.5%, 5%, 7.5%, 10% of the weight of the cement. The results showed that the addition of roving fiber increased the compressive strength and tensile strength of no-fines concrete. The optimal compressive strength was achieved at the 5% addition of fiber roving. Furthermore, the optimal splitting tensile strength of concrete was achieved on the 5% addition of fiber roving.


2020 ◽  
Vol 4 (2) ◽  
pp. 284-289
Author(s):  
Dr.Muhammad Magana Aliyu Aliyu ◽  
Nuruddeen Muhammad Musa

The use of eggshells ash for partial cement replacement in concrete has been well established in earlier studies. The effect of such partial replacement of cement with an eggshell ash and Plastiment BV-40 was investigated in this. Tests including slump test, compressive strength test, splitting tensile strength test and concrete density test were carried out on concrete in which cement was partially replaced with 0%, 5%, 10%, 15%, 20%, and 25% eggshell ash and presented. The test results indicate that eggshell ash decreases the workability of concrete. Also, for the compressive strength at 5% content, after which there is  decrease in the compressive strength with increase in the ash content. Furthermore, eggshell ash is found to increase the concrete splitting tensile strength. It was concluded that eggshell ash has the potential of being utilized in concrete as partial replacement of cement.


2019 ◽  
Vol 3 (2) ◽  
pp. 81-89
Author(s):  
Angga Pirman Firdaus ◽  
Jonbi

Indonesia ranks second in the world's largest plastic waste producer after China. Each year, Indonesia can contributeup to 187.2 million tons of plastic waste, while China reaches 262.9 million tons of plastic waste. Based on the data, one way to utilize plastic waste by using plastic waste as a mixture of concrete, where the plastic used is polypropylene (PP) plastic with different percentage of concrete mixture, the test includes compressive strength test and tensile concrete. The results of concrete compressive strength testing with polypropylene (PP) plastic waste mixture of 5%, 10% and 15% at age 28 in aggregate aggregate mixture decreased by 5.15%, 6.89% and 13.53%. As for the result of concrete tensile strength test with polypropylene (PP) plastic waste mixture of 5%, 10% and 15% at age 28 in crude aggregate mixture decreased 17,61%, 24,13% dan 23,24%.


2018 ◽  
Author(s):  
erniati

Self Compacting Concrete (SCC) is one solution to get concrete construction which it has good resistance. Durability of concrete was obtained by the good concrete compaction to be done by a skilled workforce. However, one of the negligence that often occur in the field ie after casting they was ignoring curing of the hardening concrete. This study discusses the workability of fresh concrete and mechanical properties (compressive strength and splitting tensile strength) on SCC without curing. Testing of the concrete workability based on EFNARC standard. The mechanical properties test based on ASTM standards. The method Compressive strength test based on ASTM standards 39 / C 39M - 12a, whereas splitting tensile strength accordance standard ASTM C496 / C496M-11. The results of the study indicate that the SCC without curing effect on the reduction in compressive strength at ages 1, 3, 7, 28, and 90 days in a row at 4.11 MPa (16.1%); 4.90 MPa (13.9%); 6.64 MPa (13.1%); and 6, 72 MPa (12.75%). Splitting tensile strength decreased respectively by 0.1 MPa (3.25%); 0.26 MPa (7.99%); 0.4 MPa (9.52%); and 0.39 MPa (9.16%).


Author(s):  
S. B. Kandekar ◽  
◽  
S. K. Wakchaure ◽  

Materials are the most important component of building construction. The demands of construction material are increasing day by day significantly. This demand is increasing the material prices and scarcity of material in construction industry. To achieve economical and eco-friendly criteria naturally occurring material is selected. Clay is a natural material and it can be available easily. This paper interprets the experimental investigation on strength of concrete using clay as a partial replacement to binder content (cement) in concrete. The replacement percentages are grouped as 0%, 10%, 20%, 30%, 40% of clay and 5% of hydrated lime with cement in each series in M25 grade of concrete. To achieve the pozzolanic property of clay hydrated lime was added. Different tests are performed to determine the optimum percentage of clay as a replacement for binder content (cement) in concrete. The Compressive strength test, split tensile strength test and flexural strength test were performed on the specimens. Total 90 cubes of size 150 mm were prepared for compressive strength test, 30 cylinders of 150 mm diameter and 300 mm height were prepared for split tensile strength test and 30 beams of size 150 mm x 150 mm x 1000 mm were prepared to carry out the flexural strength test. The results are compared to find the ideal proportion of clay as a replacement for cement. It is found that 10% replacement with 5% hydrated lime gives satisfactory results.


2021 ◽  
Vol 14 (2) ◽  
pp. 30
Author(s):  
Armin Naibaho ◽  
Agus Sugiarto ◽  
Purnama Dewi

Abstract The use of the mountain seal used as a building block for concrete should be considered, based on current usage apart from being a light construction material for housing, mountain materials from these two places are used as the main aggregate material for building construction, water structures (dams), roads. and bridges located in the surrounding Malang-Kota Batu area To determine the size of the aggregate, the coarse aggregate is sieved using a vibrating sieve, while the fine aggregate is sieved by a hydraulic sieve. In the screening process, about 70% of the filtered must pass so that high efficiency and capacity can be achieved. The compressive strength test results obtained the average compressive strength value at 28 days of concrete for concrete with fine aggregate sand zone III and coarse aggregate (gravel) in the Batu City area is equivalent to 35.65 MPa. The results of the split tensile strength test showed that the average split strength value at the age of 28 days for concrete with fine aggregate sand zone III and coarse aggregate (gravel) in the Kota Batu area is equivalent to 2.51 MPa. The compressive strength value for normal concrete is 35.65 MPa, it should produce split tensile strength = 4.179 MPa according to the provisions of SNI T-15-1991-03 Article 3.2.5 (fr = 0.70√fc '). Even though the split tensile strength value obtained in the laboratory is only 2.51 MPa, this means that the quality of materials (sand and broken stone) from Batu City is not suitable for use as building materials. Because the number 2.51 MPa is relatively much smaller than the value of 4.179 MPa, it is only one of the factors outlined in the SNI T-15-1991-03 article 3.2.5. Keywords: Mountain Material, Concrete, Concrete Compressive Strength Test, Concrete Tensile Strength Test


Buildings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 191
Author(s):  
Yu Li ◽  
Li Li ◽  
Vivek Bindiganavile

Coal bottom ash (CBA) is one of the by-products that can be employed as fine aggregate to replace natural sand in concrete. Owing to the very low water demand, roller-compacted concrete (RCC) has the potential to use CBA as fine aggregate at a high proportion. However, little research about RCC using CBA entirely as fine aggregate has been conducted. In this study, the uniaxial compressive strength, deformation, stress–strain curves, and splitting tensile strength of CBA-containing RCC (CBA RCC) were studied to bridge this gap. The compressive strength, elasticity modulus, and splitting tensile strength of all mixtures decreased with increasing CBA content. The relationship between compressive strength and splitting tensile strength of CBA RCC was proposed, which is very close to that recommended by the CEB-FIP code. The uniaxial compressive constitutive model based on the continuum damage theory can well illustrate the stress–strain relationship of CBA RCC. The growth process of damage variable demonstrates the hybrid effect of coarse aggregate, cement, and compacting load on delaying damage under uniaxial compression. The theoretical formula can also accurately illustrate the stress–strain curves of RCC presented in the literature studies.


2020 ◽  
Vol 14 (2) ◽  
pp. 30
Author(s):  
Armin Naibaho ◽  
Agus Sugiarto ◽  
Purnama Dewi

Abstract The use of the mountain seal used as a building block for concrete should be considered, based on current usage apart from being a light construction material for housing, mountain materials from these two places are used as the main aggregate material for building construction, water structures (dams), roads. and bridges located in the surrounding Malang-Kota Batu area To determine the size of the aggregate, the coarse aggregate is sieved using a vibrating sieve, while the fine aggregate is sieved by a hydraulic sieve. In the screening process, about 70% of the filtered must pass so that high efficiency and capacity can be achieved. The compressive strength test results obtained the average compressive strength value at 28 days of concrete for concrete with fine aggregate sand zone III and coarse aggregate (gravel) in the Batu City area is equivalent to 35.65 MPa. The results of the split tensile strength test showed that the average split strength value at the age of 28 days for concrete with fine aggregate sand zone III and coarse aggregate (gravel) in the Kota Batu area is equivalent to 2.51 MPa. The compressive strength value for normal concrete is 35.65 MPa, it should produce split tensile strength = 4.179 MPa according to the provisions of SNI T-15-1991-03 Article 3.2.5 (fr = 0.70√fc '). Even though the split tensile strength value obtained in the laboratory is only 2.51 MPa, this means that the quality of materials (sand and broken stone) from Batu City is not suitable for use as building materials. Because the number 2.51 MPa is relatively much smaller than the value of 4.179 MPa, it is only one of the factors outlined in the SNI T-15-1991-03 article 3.2.5. Keywords: Mountain Material, Concrete, Concrete Compressive Strength Test, Concrete Tensile Strength Test


2019 ◽  
Vol 258 ◽  
pp. 01024 ◽  
Author(s):  
Teddy Tambunan ◽  
Mohd. Irwan Juki ◽  
Norzila Othman

In construction, concrete durability is an important material globally used in engineering, material of which can be applied in the fields of specialized marine construction. The ingress of chloride into concrete causes deterioration in the concrete due to the reinforcement corrosion. Adding bacteria into concrete can improve material properties and increase durability with mechanism resist chloride ingressed in the concrete . Ingress of Chloride into the concrete of bacteria is particularly suited for applications of chloride ion penetration in concrete. The objective of the research is to determine the effect of adding bacteria into the concrete properties. The bacteria used in this research is locally isolated and enriched to the suite with the concrete environment. The type of the bacteria used is identified as Sulphate Reduction Bacteria (SRB). The SRB added into the concrete mix with concentrations of 3%, 5% and 7%. Whereas, concentration of bacteria water of cement is 0.5. The mechanical properties test conducted with 28th, 56th, 90th, 180th and 360th day of curing period. The test was using cyclic wetting and drying to study the exposure to chloride condition, such as compressive strength, tensile strength and flexural test. Cubes in the size of 150 mm × 150 mm × 150 mm were prepared for compressive strength test and cylinder 150 mm × 300 mm were prepared for the tensile strength test. The flexural strength test was on the prism in the size of 100 mm × 100 mm × 500 mm. The result of compressive strength test shows, that gave significant strength of 66.3 MPa on the 360th day. The tensile strength and flexural strength have a similar trend as compressive strength results, where both results were optimum . The tensile strength test shows that 4.52 MPa tends to control 3.96 MPa. The result of flexural strength test was 8.23 MPa for compared to control of 5.99 MPa. The overall results of the bacteria indicate promising outcome and further study on chloride condition capability is encouraging.


Sign in / Sign up

Export Citation Format

Share Document