scholarly journals TEKNOLOGI TEPAT GUNA PEMANFAATAN LISTRIK DAYA KECIL UNTUK PENGELOLAAN KANDANG PADA BUDIDAYA AYAM PEDAGING DI DESA PUCANGSONGO KABUPATEN MALANG

2018 ◽  
Vol 4 (1) ◽  
pp. 29
Author(s):  
Andriani Parastiwi ◽  
Mila Fauziyah ◽  
Dwi Puspitasari

One of the problems faced by small-scale broiler cultivators in Pucangsongo-Malang was the use of PLN electricity that exceeds the installed capacity. Partners feel it was too expensive to raise the power capacity. To overcome the problem, timing settings to power the equipment is needed. The cage-smell’ problem needs to be handled because the cage-locations are in settlement. The purpose of this activity was helping partners to increase productivity by helping solve problems from production aspects, as well as the safety. The implementation method was providing appropriate science and technology to partners in the form of electricity utilization management equipped with a cage monitoring system. In addition, it also developed a backup power source safety system that works when the electricity goes off to keep the cage remain conducive. Prior this activity, the cage-capacity was 3300 with an average death of 200 chickens. Currently, the cage-capacity increased to 3500 chickens with deaths down to 110 chickens. With the developed and installed electric power management equipped with monitoring system of cage condition, broiler cultivators in Pucangsongo-Malang can monitor the cage’s state at any time and power shortage problem can be resolved.

2018 ◽  
Vol 11 (2) ◽  
pp. 94-102 ◽  
Author(s):  
A. G. Filimonov ◽  
N. D. Chichirova ◽  
A. A. Chichirov ◽  
A. A. Filimonovа

Energy generation, along with other sectors of Russia’s economy, is on the cusp of the era of digital transformation. Modern IT solutions ensure the transition of industrial enterprises from automation and computerization, which used to be the targets of the second half of the last century, to digital enterprise concept 4.0. The international record of technological and structural solutions in digitization may be used in Russia’s energy sector to the full extent. Specifics of implementation of such systems in different countries are only determined by the level of economic development of each particular state and the attitude of public authorities as related to the necessity of creating conditions for implementation of the same. It is shown that a strong legislative framework is created in Russia for transition to the digital economy, with research and applied developments available that are up to the international level. The following digital economy elements may be used today at enterprises for production of electrical and thermal energy: — dealing with large amounts of data (including operations exercised via cloud services and distributed data bases); — development of small scale distributed generation and its dispatching; — implementation of smart elements in both electric power and heat supply networks; — development of production process automation systems, remote monitoring and predictive analytics; 3D-modeling of parts and elements; real time mathematic simulation with feedback in the form of control actions; — creating centres for analytical processing of statistic data and accounting in financial and economic activities with business analytics functions, with expansion of communication networks and computing capacities. Examples are presented for implementation of smart systems in energy production and distribution. It is stated in the paper that state-of art information technologies are currently being implemented in Russia, new unique digital transformation projects are being launched in major energy companies. Yet, what is required is large-scale and thorough digitization and controllable energy production system as a multi-factor business process will provide the optimum combination of efficient economic activities, reliability and safety of power supply.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 48713-48731
Author(s):  
William Felipe Ceccon ◽  
Roberto Z. Freire ◽  
Anderson Luis Szejka ◽  
Osiris Canciglieri Junior

Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 304
Author(s):  
Qingxiu Miao ◽  
Yaoling Zhang ◽  
Shuo Cong ◽  
Fei Guo

Membrane distillation (MD) processes need a relatively mild temperature gradient as the driving force for desalination. In the field, it is reasonable to utilize solar energy as the heat source for the feed, and seawater as the infinite cold source for condensation. Solar-driven MD provides a route for the practical application of seawater desalination at a small scale. In this work, we focus on floating MD modules with a solar heating bag as the power source, and perform proof-of-principle experiments on the MD performance under various conditioning parameters, including feed flow rate, feed temperature, salinity, air gap, and sea waves. The results indicate that floating solar-driven MD modules are feasible in terms of permeate flux and salt rejection ratio, and the upward evaporation MD configuration leads to a better performance in terms of permeate flux. The simulation and experiments also show that the natural sea waves disturb the heating bag and the MD module floating on the surface of seawater, and effectively enhance the feed circulation and transport in the system.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1723
Author(s):  
Félix Dubuisson ◽  
Miloud Rezkallah ◽  
Hussein Ibrahim ◽  
Ambrish Chandra

In this paper, the predictive-based control with bacterial foraging optimization technique for power management in a standalone microgrid is studied and implemented. The heuristic optimization method based on the social foraging behavior of Escherichia coli bacteria is employed to determine the power references from the non-renewable energy sources and loads of the proposed configuration, which consists of a fixed speed diesel generator and battery storage system (BES). The two-stage configuration is controlled to maintain the DC-link voltage constant, regulate the AC voltage and frequency, and improve the power quality, simultaneously. For these tasks, on the AC side, the obtained power references are used as input signals to the predictive-based control. With the help of the system parameters, the predictive-based control computes all possible states of the system on the next sampling time and compares them with the estimated power references obtained using the bacterial foraging optimization (BFO) technique to get the inverter current reference. For the DC side, the same concept based on the predictive approach is employed to control the DC-DC buck-boost converter by regulating the DC-link voltage using the forward Euler method to generate the discrete-time model to predict in real-time the BES current. The proposed control strategies are evaluated using simulation results obtained with Matlab/Simulink in presence of different types of loads, as well as experimental results obtained with a small-scale microgrid.


Sign in / Sign up

Export Citation Format

Share Document