scholarly journals Nano Spray TRISWHEAT (Teripang Super Wound Healing Agent) Penyembuh Luka Diabetes Mellitus yang Terinfeksi Bakteri MRSA (Methicillin Resistant Staphylococcus aureus) dengan Ekstrak Teripang

2018 ◽  
Vol 36 (1) ◽  
pp. 40
Author(s):  
Nada Hanifah ◽  
Yusuf Farid Achmad ◽  
Mellya Permatasari ◽  
Marista Kurniati ◽  
Ditya Tiwi Syafira ◽  
...  

Sea Cucumber (Stichopus sp) belongs to Holothuroidea family. Sea Cucumber has lot of uses in the medicine sector, such as: for wound healing, anti-biotic, anti-bacteria, anti-tumor, and anti-coagulation. Diabetes mellitus is a disease characterized by high blood sugar levels with metabolic disorders. This disease can cause wounds called gangrene This research has purpose to prove the influence of giving nano spray of sea cucumber extract within 14 days. In the in vitro examination found 40% concentration of sea cucumber extract which is effective to resist the growth of Methicillin Resistant Staphylococcus aureus bacteria and examined to wistar mouse which are already diabetic inducted with Streptozotocin (STZ) and hurt with punch biopsy with the diameter of 0,8 cm on its back and the wound is infected with bacteria which is intradermal injected. Divided into 3 groups : (K-) no medical treatment, nano spray of sea cucumber extract (T), Nano spray penicillin (K+) to wistar mouse towards the speed of diabetic mellitus wound healing which is infected by Methicillin Resistant Staphylococcus aureus bacteria. Parameter used to measure the rate of wound healing is wound size and hitopathology examination.After it’s regularly given the medicine, the result of nano spray sea cucumber extract 40 % concetration category treatment on wound healing process the diameter of wound on the 3rd day 0.8 cm , on the 7th day 0.4 cm and on the 14th day  wound fully recover according to macros (wound size) and histopathology examination shows faster and better healing compared to treatment category of nano spray penicillin and control marked by score cell and lymphocyte in a small quantity.

2021 ◽  
pp. 1116-1123
Author(s):  
Nadya Fianny Ardita ◽  
Lenny Mithasari ◽  
Daris Untoro ◽  
Siti Isrina Oktavia Salasia

Methicillin-resistant Staphylococcus aureus (MRSA), currently a major problem in hospitals worldwide, is one of the most common causes of nosocomial disease through surgical wound infection. MRSA-infected wounds have very low recovery rates and have become more problematic as some antibiotics are not effective against MRSA. Several antimicrobial and anti-inflammatory agents of green algae (Ulva lactuca) in the form of alkaloids, triterpenoids, steroids, saponins, and flavonoids have the potential to accelerate the wound healing process following MRSA wound infection. Various active compounds contained in the U. lactuca extract are thought to have multiple antibacterial and anti-inflammatory properties that can overcome the MRSA antimicrobial resistance and accelerate tissue growth in the wound healing process. This review aims to describe the potential of Ulva lactuca extract against MRSA-infected wound healing.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 828
Author(s):  
Li Guo ◽  
Lu Yang ◽  
Yu Qi ◽  
Gulimire Niyazi ◽  
Jianbao Zheng ◽  
...  

Biofilm infections in wounds seriously delay the healing process, and methicillin-resistant Staphylococcus aureus is a major cause of wound infections. In addition to inactivating micro-organisms, low-temperature gas plasma can restore the sensitivity of pathogenic microbes to antibiotics. However, the combined treatment has not been applied to infectious diseases. In this study, low-temperature gas plasma treatment promoted the effects of different antibiotics on the reduction of S. aureus biofilms in vitro. Low-temperature gas plasma combined with rifampicin also effectively reduced the S. aureus cells in biofilms in the murine wound infection model. The blood and histochemical analysis demonstrated the biosafety of the combined treatment. Our findings demonstrated that low-temperature gas plasma combined with antibiotics is a promising therapeutic strategy for wound infections.


2021 ◽  
Vol 22 (8) ◽  
pp. 4087
Author(s):  
Maria Quitério ◽  
Sandra Simões ◽  
Andreia Ascenso ◽  
Manuela Carvalheiro ◽  
Ana Paula Leandro ◽  
...  

Insulin is a peptide hormone with many physiological functions, besides its use in diabetes treatment. An important role of insulin is related to the wound healing process—however, insulin itself is too sensitive to the external environment requiring the protective of a nanocarrier. Polymer-based nanoparticles can protect, deliver, and retain the protein in the target area. This study aims to produce and characterize a topical treatment for wound healing consisting of insulin-loaded poly-DL-lactide/glycolide (PLGA) nanoparticles. Insulin-loaded nanoparticles present a mean size of approximately 500 nm and neutral surface charge. Spherical shaped nanoparticles are observed by scanning electron microscopy and confirmed by atomic force microscopy. SDS-PAGE and circular dichroism analysis demonstrated that insulin preserved its integrity and secondary structure after the encapsulation process. In vitro release studies suggested a controlled release profile. Safety of the formulation was confirmed using cell lines, and cell viability was concentration and time-dependent. Preliminary safety in vivo assays also revealed promising results.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1731
Author(s):  
Yu Maw Htwe ◽  
Huashan Wang ◽  
Patrick Belvitch ◽  
Lucille Meliton ◽  
Mounica Bandela ◽  
...  

Lung endothelial dysfunction is a key feature of acute lung injury (ALI) and clinical acute respiratory distress syndrome (ARDS). Previous studies have identified the lipid-generating enzyme, group V phospholipase A2 (gVPLA2), as a mediator of lung endothelial barrier disruption and inflammation. The current study aimed to determine the role of gVPLA2 in mediating lung endothelial responses to methicillin-resistant Staphylococcus aureus (MRSA, USA300 strain), a major cause of ALI/ARDS. In vitro studies assessed the effects of gVPLA2 inhibition on lung endothelial cell (EC) permeability after exposure to heat-killed (HK) MRSA. In vivo studies assessed the effects of intratracheal live or HK-MRSA on multiple indices of ALI in wild-type (WT) and gVPLA2-deficient (KO) mice. In vitro, HK-MRSA increased gVPLA2 expression and permeability in human lung EC. Inhibition of gVPLA2 with either the PLA2 inhibitor, LY311727, or with a specific monoclonal antibody, attenuated the barrier disruption caused by HK-MRSA. LY311727 also reduced HK-MRSA-induced permeability in mouse lung EC isolated from WT but not gVPLA2-KO mice. In vivo, live MRSA caused significantly less ALI in gVPLA2 KO mice compared to WT, findings confirmed by intravital microscopy assessment in HK-MRSA-treated mice. After targeted delivery of gVPLA2 plasmid to lung endothelium using ACE antibody-conjugated liposomes, MRSA-induced ALI was significantly increased in gVPLA2-KO mice, indicating that lung endothelial expression of gVPLA2 is critical in vivo. In summary, these results demonstrate an important role for gVPLA2 in mediating MRSA-induced lung EC permeability and ALI. Thus, gVPLA2 may represent a novel therapeutic target in ALI/ARDS caused by bacterial infection.


2021 ◽  
Vol 165 ◽  
pp. 39
Author(s):  
Francesca Lombardi ◽  
Silvano Santini ◽  
Paola Palumbo ◽  
Valeria Cordone ◽  
Virginio Bignotti ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2554
Author(s):  
Marek Konop ◽  
Anna K. Laskowska ◽  
Mateusz Rybka ◽  
Ewa Kłodzińska ◽  
Dorota Sulejczak ◽  
...  

Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate due to its biocompatibility and biodegradability. In this study, we evaluated an insoluble fraction of keratin containing casomorphin as a wound dressing in a full-thickness surgical skin wound model in mice (n = 20) with iatrogenically induced diabetes. Casomorphin, an opioid peptide with analgesic properties, was incorporated into keratin and shown to be slowly released from the dressing. An in vitro study showed that keratin-casomorphin dressing is biocompatible, non-toxic, and supports cell growth. In vivo experiments demonstrated that keratin-casomorphin dressing significantly (p < 0.05) accelerates the whole process of skin wound healing to the its final stage. Wounds covered with keratin-casomorphin dressing underwent reepithelization faster, ending up with a thicker epidermis than control wounds, as confirmed by histopathological and immunohistochemical examinations. This investigated dressing stimulated macrophages infiltration, which favors tissue remodeling and regeneration, unlike in the control wounds in which neutrophils predominated. Additionally, in dressed wounds, the number of microhemorrhages was significantly decreased (p < 0.05) as compared with control wounds. The dressing was naturally incorporated into regenerating tissue during the wound healing process. Applied keratin dressing favored reconstruction of more regular skin structure and assured better cosmetic outcome in terms of scar formation and appearance. Our results have shown that insoluble keratin wound dressing containing casomorphin supports skin wound healing in diabetic mice.


Sign in / Sign up

Export Citation Format

Share Document