scholarly journals Study of Molecular interaction in Binary Mixtures containing N, N-Dimethylformamide and n-Butanol

2021 ◽  
Vol 17 (01) ◽  
pp. 1-8
Author(s):  
BISWAJIT SAMANTARAY ◽  
◽  
MANOJ KUMAR PRAHARAJ ◽  
SMRUTI PRAVA DAS ◽  
◽  
...  

The acoustic studies of the interactions between alcohol molecules and water soluble polar solvent DMF are significant for understanding the relationships between structure and function of polar molecule like DMF, and for explaining the mechanisms of interaction of alcoholic OH group with an electronegative moiety. In this piece of work Ultrasonic velocity, density and viscosity have been measured at 298 K, 308 K, 318 K and 328 K for mixture of N,N-dimethylformamide (DMF) and n-butanol, the frequency being maintained at a constant value. The experimental data have been used to calculate the acoustical and thermodynamical parameters like adiabatic compressibility, free length, free volume, internal pressure, acoustic impedance, Gibbs free energy

2012 ◽  
Vol 9 (1) ◽  
pp. 415-419
Author(s):  
V. Vanathi ◽  
S. Mullainathan ◽  
S. Nithiyanantham

Ultrasonic velocity, density and viscosity of the ternary mixture of 1, 4- dioxane + chloroform + cyclohexane, were measured at 303.15, 308.15 and 313.15 K. The thermodynamical parameters such as adiabatic compressibility (β), intermolecular free length (Lf), free volume (Vf), internal pressure (πi), acoustic impedance (Z), molar sound velocity (R) and molar compressibility (W) have been obtained from the experimental data for all the mixtures, with a view to investigate the exact nature of molecular interaction. Adiabatic compressibility and intermolecular free length decrease with increase in concentration and temperature. The other parameters show almost increasing concentration of solutes. These parameters have been further used to interpret the molecular interaction part of the solute and solvent in the mixtures.


2010 ◽  
Vol 7 (2) ◽  
pp. 465-472 ◽  
Author(s):  
S. Thirumaran ◽  
J. Earnest Jayakumar ◽  
B. Hubert Dhanasundaram

The ultrasonic study of velocity, density and viscosity has been measured for the mixtures ofn-alkanols, namely; 1-propoanol, 1-butanol and 1-pentanol in toluene withN-Ndimethyl acetamide (DMA) at 303K. The experimental data have been used to calculate the acoustical parameters such as adiabatic compressibility (β), intermolecular free length (Lf), free volume (Vf), internal pressure (πi) and acoustic impedance (Z). The excess values of the above parameters have also been evaluated and presented. From the present investigation, it is obvious that a weak molecular association was identified. Mixing of DMA withnalkanols causes dissociation of hydrogen bonded structures ofn- alkanols. Also, further addition of DMA with the mixture not only causes dissociation of hydrogen bonded structures ofn-alkanols but also a decrease in molecular association between toluene andn-alkanols is observed. The evaluated excess values predict weak molecular interactions existing between DMA-n-alkanols as well as toluene-n-alkanols.


2010 ◽  
Vol 7 (2) ◽  
pp. 353-356 ◽  
Author(s):  
S. Mullainathan ◽  
S. Nithiyanantham

The ultrasonic velocity, density and viscosity at 303 K have been measured in the binary systems of 1,4-dioxane and acetone with water. From the experimental data, various acoustical parameters such as adiabatic compressibility (β), intermolecular free length (Lf), free volume (Vf), internal pressure (πi), Rao’s constant (R), Wada’s constant (W) and specific acoustical impedance (Z) were calculated. The results are interpreted in terms of molecular interaction between the components of the mixtures.


Author(s):  
C.H. Srinivasu ◽  
K. Anil Kumar ◽  
S.K. Fakruddin ◽  
K. Narendra ◽  
T. Anjaneyulu

The values of ultrasonic velocity (u), density (ρ), and viscosity (η) have been measured experimentally in the binary liquid mixture containing 1-butanol and hexane over the entire range of composition at different temperatures 313.15 K, 318.15 K and 323.15 K. This experimental data have been used to calculate the acoustical parameters such as adiabatic compressibility (β), free length (Lf), molar volume (Vm) and acoustic impedance(z). The results have been qualitatively used to explain the molecular interactions between the components of the liquid mixture.


2011 ◽  
Vol 8 (1) ◽  
pp. 457-469 ◽  
Author(s):  
N. Jaya Madhuri ◽  
P. S. Naidu ◽  
J. Glory ◽  
K. Ravindra Prasad

Ultrasonic velocity, density and viscosity have been measured in the binary mixtures of benzyl benzoate with acetonitrile, benzonitrile at three temperatures 30, 40 and 50°C. From the experimental data, thermodynamic parameters like adiabatic compressibility, internal pressure, enthalpy, activation energy etc., were computed and the molecular interactions were predicted based on the variation of excess parameters in the mixture. Also theoretical evaluation of velocities was made employing the standard theories. CFT and NOMOTO were found to have an edge. All the three mixtures have shown out strong intermolecular interactions between the unlike molecules and endothermic type of chemical reaction.


2014 ◽  
Vol 395 (12) ◽  
pp. 1365-1377 ◽  
Author(s):  
Grant Kemp ◽  
Florian Cymer

Abstract Membrane proteins are important mediators between the cell and its environment or between different compartments within a cell. However, much less is known about the structure and function of membrane proteins compared to water-soluble proteins. Moreover, until recently a subset of membrane proteins, those shorter than 100 amino acids, have almost completely evaded detection as a result of technical difficulties. These small membrane proteins (SMPs) have been underrepresented in most genomic and proteomic screens of both pro- and eukaryotic cells and, hence, we know much less about their functions in both. Currently, through a combination of bioinformatics, ribosome profiling, and more sensitive proteomics, large numbers of SMPs are being identified and characterized. Herein we describe recent advances in identifying SMPs from genomic and proteomic datasets and describe examples where SMPs have been successfully characterized biochemically. Finally we give an overview of identified functions of SMPs and speculate on the possible roles SMPs play in the cell.


2009 ◽  
Vol 390 (9) ◽  
Author(s):  
Ernst G. Malygin ◽  
Alexey A. Evdokimov ◽  
Stanley Hattman

Abstract DNA methyltransferases (MTases) are enzymes that carry out post-replicative sequence-specific modifications. The initial experimental data on the structure and kinetic characteristics of the EcoRI MTase led to the paradigm that type II systems comprise dimeric endonucleases and monomeric MTases. In retrospect, this was logical because, while the biological substrate of the restriction endonuclease is two-fold symmetrical, the in vivo substrate for the MTase is generally hemi-methylated and, hence, inherently asymmetric. Thus, the paradigm was extended to include all DNA MTases except the more complex bifunctional type I and type III enzymes. Nevertheless, a gradual enlightenment grew over the last decade that has changed the accepted view on the structure of DNA MTases. These results necessitate a more complex view of the structure and function of these important enzymes.


2006 ◽  
Vol 17 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Kurt W. Kohn ◽  
Mirit I. Aladjem ◽  
John N. Weinstein ◽  
Yves Pommier

A standard for bioregulatory network diagrams is urgently needed in the same way that circuit diagrams are needed in electronics. Several graphical notations have been proposed, but none has become standard. We have prepared many detailed bioregulatory network diagrams using the molecular interaction map (MIM) notation, and we now feel confident that it is suitable as a standard. Here, we describe the MIM notation formally and discuss its merits relative to alternative proposals. We show by simple examples how to denote all of the molecular interactions commonly found in bioregulatory networks. There are two forms of MIM diagrams. “Heuristic” MIMs present the repertoire of interactions possible for molecules that are colocalized in time and place. “Explicit” MIMs define particular models (derived from heuristic MIMs) for computer simulation. We show also how pathways or processes can be highlighted on a canonical heuristic MIM. Drawing a MIM diagram, adhering to the rules of notation, imposes a logical discipline that sharpens one's understanding of the structure and function of a network.


Sign in / Sign up

Export Citation Format

Share Document