scholarly journals BI-DIRECTIONAL RECURRENT NEURAL NETWORK FOR IMPROVING MULTISPECTRAL IMAGE DENOISING

2017 ◽  
Vol 10 (13) ◽  
pp. 272
Author(s):  
Ankush Rai ◽  
Jagadeesh Kannan R

While procuring images form satellite the multispectral images (MSI) are often prone to noises. finding a good mathematical description of the learning based denoising model is a difficult research question and many different research accounted in the literature. Many have attempted its use with the application of neural network as a sparse learned dictionary of noisy patches. Also, this approach allows several algorithm to optimize itself for the given task at hand by using machine learning algorithm. In this study we present an improved method for learning based denoising of MSI images. Recurrent neural network used in this study helps in speeding up the computational operability and denoising performance by over 85% to 95%.     

2017 ◽  
Vol 10 (13) ◽  
pp. 292
Author(s):  
Ankush Rai ◽  
Jagadeesh Kannan R

In comparison with the standard RGB or gray-scale images, the usual multispectral images (MSI) are intended to convey high definition and anauthentic representation for real world scenes to significantly enhance the performance measures of several other tasks involving with computervision, segmentation of image, object extraction, and object tagging operations. While procuring images form satellite, the MSI are often prone tonoises. Finding a good mathematical description of the learning-based denoising model is a difficult research question and many different researchesaccounted in the literature. Many have attempted its use with the application of neural network as a sparse learned dictionary of noisy patches.Furthermore, this approach allows several algorithm to optimize itself for the given task at hand using machine learning algorithm. However, inpractices, a MSI image is always prone to corruption by various sources of noises while procuring the images. In this survey, we studied the pasttechniques attempted for the noise influenced MSI images. The survey presents the outline of past techniques and their respective advantages incomparison with each other.


Author(s):  
Murugan Krishnamoorthy ◽  
Bazeer Ahamed B. ◽  
Sailakshmi Suresh ◽  
Solaiappan Alagappan

Construction of a neural network is the cardinal step to any machine learning algorithm. It requires profound knowledge for the developer in assigning the weights and biases to construct it. And the construction should be done for multiple epochs to obtain an optimal neural network. This makes it cumbersome for an inexperienced machine learning aspirant to develop it with ease. So, an automated neural network construction would be of great use and provide the developer with incredible speed to program and run the machine learning algorithm. This is a crucial assist from the developer's perspective. The developer can now focus only on the logical portion of the algorithm and hence increase productivity. The use of Enas algorithm aids in performing the automated transfer learning to construct the complete neural network from the given sample data. This algorithm proliferates on the incoming data. Hence, it is very important to inculcate it with the existing machine learning algorithms.


2021 ◽  
Author(s):  
Aria Abubakar ◽  
Mandar Kulkarni ◽  
Anisha Kaul

Abstract In the process of deriving the reservoir petrophysical properties of a basin, identifying the pay capability of wells by interpreting various geological formations is key. Currently, this process is facilitated and preceded by well log correlation, which involves petrophysicists and geologists examining multiple raw log measurements for the well in question, indicating geological markers of formation changes and correlating them with those of neighboring wells. As it may seem, this activity of picking markers of a well is performed manually and the process of ‘examining’ may be highly subjective, thus, prone to inconsistencies. In our work, we propose to automate the well correlation workflow by using a Soft- Attention Convolutional Neural Network to predict well markers. The machine learning algorithm is supervised by examples of manual marker picks and their corresponding occurrence in logs such as gamma-ray, resistivity and density. Our experiments have shown that, specifically, the attention mechanism allows the Convolutional Neural Network to look at relevant features or patterns in the log measurements that suggest a change in formation, making the machine learning model highly precise.


2021 ◽  
Author(s):  
jorge cabrera Alvargonzalez ◽  
Ana Larranaga Janeiro ◽  
Sonia Perez ◽  
Javier Martinez Torres ◽  
Lucia martinez lamas ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been and remains one of the major challenges humanity has faced thus far. Over the past few months, large amounts of information have been collected that are only now beginning to be assimilated. In the present work, the existence of residual information in the massive numbers of rRT-PCRs that tested positive out of the almost half a million tests that were performed during the pandemic is investigated. This residual information is believed to be highly related to a pattern in the number of cycles that are necessary to detect positive samples as such. Thus, a database of more than 20,000 positive samples was collected, and two supervised classification algorithms (a support vector machine and a neural network) were trained to temporally locate each sample based solely and exclusively on the number of cycles determined in the rRT-PCR of each individual. Finally, the results obtained from the classification show how the appearance of each wave is coincident with the surge of each of the variants present in the region of Galicia (Spain) during the development of the SARS-CoV-2 pandemic and clearly identified with the classification algorithm.


Author(s):  
Sercan Demirci ◽  
Durmuş Özkan Şahin ◽  
Ibrahim Halil Toprak

Skin cancer, which is one of the most common types of cancer in the world, is a malignant growth seen on the skin due to various reasons. There was an increase in the number of the cases of skin cancer nearly 200% between 2004-2009. Since the ozone layer is depleting, harmful rays reflected from the sun cannot be filtered. In this case, the likelihood of skin cancer will increase over the years and pose more risks for human beings. Early diagnosis is very significant as in all types of cancers. In this study, a mobile application is developed in order to detect whether the skin spots photographed by using the machine learning technique for early diagnosis have a suspicion of skin cancer. Thus, an auxiliary decision support system is developed that can be used both by the clinicians and individuals. For cases that are predicted to have a risk higher than a certain rate by the machine learning algorithm, early diagnosis could be initiated for the patients by consulting a physician when the case is considered to have a higher risk by machine learning algorithm.


Author(s):  
Amirata Ghorbani ◽  
Abubakar Abid ◽  
James Zou

In order for machine learning to be trusted in many applications, it is critical to be able to reliably explain why the machine learning algorithm makes certain predictions. For this reason, a variety of methods have been developed recently to interpret neural network predictions by providing, for example, feature importance maps. For both scientific robustness and security reasons, it is important to know to what extent can the interpretations be altered by small systematic perturbations to the input data, which might be generated by adversaries or by measurement biases. In this paper, we demonstrate how to generate adversarial perturbations that produce perceptively indistinguishable inputs that are assigned the same predicted label, yet have very different interpretations. We systematically characterize the robustness of interpretations generated by several widely-used feature importance interpretation methods (feature importance maps, integrated gradients, and DeepLIFT) on ImageNet and CIFAR-10. In all cases, our experiments show that systematic perturbations can lead to dramatically different interpretations without changing the label. We extend these results to show that interpretations based on exemplars (e.g. influence functions) are similarly susceptible to adversarial attack. Our analysis of the geometry of the Hessian matrix gives insight on why robustness is a general challenge to current interpretation approaches.


Since the introduction of Machine Learning in the field of disease analysis and diagnosis, it has been revolutionized the industry by a big margin. And as a result, many frameworks for disease prognostics have been developed. This paperfocuses on the analysis of three different machine learning algorithms – Neural network, Naïve bayes and SVM on dementia. While the paper focuses more on comparison of the three algorithms, we also try to find out about the important features and causes related to dementia prognostication. Dementia is a severe neurological disease which renders a person unable to use memory and logic if not treated at the early stage so a correct implementation of fast machine learning algorithm may increase the chances of successful treatment. Analysis of the three algorithms will provide algorithm pathway to do further research and create a more complex system for disease prognostication.


Sign in / Sign up

Export Citation Format

Share Document