scholarly journals FORMULATION OF IMMEDIATE RELEASE (IR) ATORVASTATIN CALCIUM PELLETS AND SUSTAINED RELEASE (SR) GLIBENCLAMIDE FOR FIXED-DOSE COMBINATION DOSAGE FORM

Author(s):  
Kowshik K ◽  
Vishal Gupta N ◽  
Gowda Dv ◽  
Praveen Sivadasu

Objective: The objective of the present research was to develop fixed-dose combinations for the treatment of dyslipidemia, associated with type-II diabetes mellitus for improvement of glucose tolerance.Methods: Multiple unit pellet systems (MUPSs) consisting immediate release atorvastatin calcium pellets and sustained release glibenclamide were formulated by spheronization technique. The characterization of formulated pellets was done by Fourier transform infrared (FT-IR) and differential scanning calorimetry (DSC) studies, and formulated pellets were evaluated for solubility, viscosity, pH, and in vitro studies.Results: From FT-IR and DSC studies, it was confirmed that no chemical interaction existed between the drug and the natural polymers used. Solubility of glibenclamide was found to be 4.38 and 18.24 and atorvastatin calcium was found to be 6.84, 214.67, and 287.43 g/L. The viscosity of 1% w/v of locust bean gum, guar gum, and ghatti gum was found to be 169 cP, 124 cP, and 31 cP in distilled water. The pH of locust bean gum, guar gum, and gum ghatti solutions was found to be 5.6±0.49, 5.2±0.27, and 4.7±0.51. The in vitro studies suggested that glibenclamide pellets had shown a sustained release till 12 h, while atorvastatin calcium had shown immediate release of drug due to rapid disintegration of pellets.Conclusion: Thus, MUPS can be considered as an alternative approach to treat diabetes induced dyslipidemia.

Author(s):  
BHARAT BIJAPUR ◽  
GOWDA DV ◽  
VISHAL GUPTA N ◽  
SHAILESH THIRUMALESHWAR ◽  
PRAVEEN SIVADASU ◽  
...  

Objective: The objective of the present work was to develop novel fixed-dose combinations (FDCs) for improvement of glucose tolerance in type II diabetes mellitus patients associated with dyslipidemia. Methods: Multiple unit pellet systems (MUPSs) consisting of sustained release (SR) glimepiride and immediate release atorvastatin calcium pellets were formulated. The SR glimepiride pellets were prepared using a combination of locust bean gum and gum ghatti/guar gum. Similarly, the immediate release of atorvastatin calcium pellets was prepared using locust bean gum suspension as a binder. Results: The formulated pellets were characterized using Fourier transform infrared spectroscopy (FTIR) and Differential scanning calorimetry (DSC). Further, surface morphology of the formulated pellets was done by scanning electron microscopy (SEM). FT-IR and DSC studies suggested that there were no chemical interactions between the drug and natural polymers. SEM studies revealed that formulated pellets were in spherical shape. Based on in vitro evaluation, the SR glimepiride formulation developed using a combination of 2% locust bean gum and 2.5% gum ghatti polymers sustained the release of the drug up to 12 h. Similarly, the immediate release atorvastatin calcium formulation containing 1% w/w locust bean gum suspension as a binder and 7% croscarmellose sodium showed fast disintegration of pellets. The in vivo studies in albino Wistar rat revealed that there was an improvement in bioavailability of the drugs. Stability studies showed that there were no significant changes in the drug content and physical appearance of the prepared SR glimepiride and immediate release atorvastatin pellet formulations. Conclusion: Thus, the formulated FDC as MUPS can be used as an alternative approach for treating diabetes mellitus-induced dyslipidemia.


Author(s):  
Pearl Pires Dighe ◽  
Tank Hm

 Objective: The current study involves the fabrication of oral bilayer matrix designs of a combination of two drugs, metoprolol succinate and atorvastatin calcium, the optimization of their in vitro release and characterization using the design expert software. Metoprolol succinate, a β1- selective adrenergic receptor blocking agent, is used in the management of hypertension has a half-life of approximately 4–5 h; thus, there is the need to use extended-release formulation for prolonged action. Atorvastatin is a hydroxymethylglutaryl-coenzyme A reductase inhibitor, an antilipidemic, used to lower blood cholesterol. The rationale for this fixed-dose combination is to coadminister two drugs acting by different mechanisms of action together, reduce dosing frequency, and increase patient compliance.Methods: A 32 factorial design was selected to analyze the effect of critical factors, polymer concentration of Kollidon sustained release (SR), and Eudragit RS and their interaction on the in vitro release of the SR part containing metoprolol succinate. The drug release at 2 h (Q2), 8 h (Q8), and 20 h (Q20) was taken as responses. The blends of both layers were prepared, evaluated for precompression characteristics, and compressed by direct compression. The compressed bilayer tablets were evaluated for their hardness, weight variation, friability, content uniformity, diameter, and in vitro release.Result and Conclusion: The release profile indicates Higuchi’s kinetics. Contour and surface response plots show significant interaction among the formulation variables. Formulation MS06 containing 70 mg Kollidon SR and 10 mg Eurdragit RS was found to be the optimized formulation, controlling the drug release for a 24 h period.


Author(s):  
Tarun Parashar ◽  
Nardev Singh

Objective: In the present research work, the aim was to prepare the bilayer tablet of atenolol for biphasic drug release to improve its bioavailability and absorption in the lower gastrointestinal tract. Methods: In the formulation of immediate release crospovidone, croscarmellose sodium, and sodium starch glycolate was used as super disintegrate and was directly compressed. For a sustained release portion different grade hydroxypropyl methylcellulose (HPMC) K4M, HPMC K15M, gum tragacanth, gum acacia, guar gum, and ethyl cellulose. Preformulation studies were performed before compression. The compressed bilayer tablets were evaluated for weight variation, dimension, hardness, friability, drug content, disintegration time, and in vitro drug release using USP dissolution apparatus type 2 (paddle). Results: The formulation IR3 showed 95% drug release in 30 min, and regression coefficient value (r2) value was found to be 0.994 suggesting first-order drug release kinetics. The F9 formulation using HPMC K15M and gum acacia (1:1) showed 91.20% drug release at the end of 12 h, and regression coefficient value (r2) was 0.992 suggesting zero-order drug release kinetics. Formulation IR3F9 showed faster drug release for bilayer tablet containing 5%w/w crospovidone in immediate release layer and HPMC and guar gum (1:1) in sustained release. Formulation IR3F9 showed swelling index 206%, floating lag time was found to be 2 min and total floating time up to 12 h. Conclusion: The formulation IR3F9 showed a faster drug release profile among the others in the preparation of the atenolol bilayer tablet. Hence, it was considered as an optimized formulation.


2020 ◽  
Vol 11 (3) ◽  
pp. 10906-10922

The aim was to design, formulate, and evaluate bilayer gastro floating tablets of an antidiabetic agent, nateglinide (immediate-release layer), and antihypertensive agent, atenolol (sustained-release layer). The solubility of model drug nateglinide was enhanced by using cremophor RH 40 and characterized by FTIR, DSC, XRD, SEM, and in vitro dissolution. It was found that selected ingredients were compatible, and crystalline nateglinide transits to an amorphous state. The gastro-bilayer tablets were directly compressed using the optimized nateglinide (solid dispersion equivalent to 60 mg of nateglinide) immediate-release layer (IRL2) containing different percentage of F-Melt type C and crospovidone and atenolol (50 mg) sustained-release layer (SRL6) using different percentage of HPMC K15, sodium bicarbonate, and MCC. Developed tablets were evaluated and found within the acceptance range as per the guidelines. The release of nateglinide and atenolol from an optimized bilayer tablet (BLT3) was 100 % within 60 min and 12 h, respectively. The floating lag time and total floating time were 2 min and 12 h, respectively. The atenolol sustained-release followed the diffusion mechanism. The combination of nateglinide and atenolol was successfully showed a biphasic release pattern. This formulation may strengthen the fixed-dose combination therapy for diabetes and hypertension at a low cost.


Author(s):  
Bipul Nath ◽  
Santimoni Saikia

In the present investigation, sodium alginate based multiparticulate system overcoated with time and pH dependent polymer was studied in the form of oral pulsatile system to achieve pulsatile with sustained release of aceclofenac for chronotherapy of rheumatoid arthritis seven batches of micro beads with varying concentration of sodium alginate (2-5 %) were prepared by ionotropic-gelation method using CaCl2 as cross-linking agent. The prepared Ca-alginate beads were coated with 5% Eudragit L100 and filled into pulsatile capsule with varying proportion of plugging materials. Drug loaded microbeads were investigated for physicochemical properties and drug release characteristics. The mean particle sizes of drug-loaded microbeads were found to be in the range 596±1.1 to 860 ± 1.2 micron and %DEE in the range of 65-85%. FT-IR and DSC studies revealed the absence of drug polymer interactions. The release of aceclofenac from formulations F1 to F7 in buffer media (pH 6.8) at the end of 5h was 65.6, 60.7, 55.7, 41.2, 39.2, 27 and 25% respectively. Pulsatile system filled with eudragit coated Ca-alginate microbeads (F2) showed better drug content, particle size, surface topography, in-vitro drug release in a controlled manner. Different plugging materials like Sterculia gum, HPMC K4M and Carbopol were used in the design of pulsatile capsule. The pulsatile system remained intact in buffer pH 1.2 for 2 hours due to enteric coat of the system with HPMCP. The enteric coat dissolved when the pH of medium was changed to 7.4. The pulsatile system developed with Sterculia gum as plugging material showed satisfactory lag period when compared to HPMC and Carbopol.


Author(s):  
Prakash Goudanavar ◽  
Ankit Acharya ◽  
Vinay C.H

Administration of an antiviral drug, acyclovir via the oral route leads to low and variable bioavailability (15-30%). Therefore, this research work was aimed to enhance bioavailability of acyclovir by nanocrystallization technique. The drug nanocrystals were prepared by anti-solvent precipitation method in which different stabilizers were used. The formed nanocrystals are subjected to biopharmaceutical characterization including solubility, particle size and in-vitro release. SEM studies showed nano-crystals were crystalline nature with sharp peaks. The formulated drug nanocrystals were found to be in the range of 600-900nm and formulations NC7 and NC8 showed marked improvement in dissolution velocity when compared to pure drug, thus providing greater bioavailability. FT-IR and DSC studies revealed the absence of any chemical interaction between drug and polymers used. 


Author(s):  
C Suja ◽  
Sismy C

The goal of this study was to formulate and evaluate norfloxacin sustained release tablets. Norfloxacin sustained release tablets were prepared by wet granulation method using two polymers such as HPMC K 100 M (hydrophilic polymer) and guar gum (natural polymer) and with three polymer ratios (0.5, 1.0 and 1.5). The prepared granules were evaluated to preformulation studies such as angle of repose, bulk density, tapped density, bulkiness, compressibility index and Hauser’s ratio. All the parameters shows that the granules having good flow properties. Then the formulated tablets were taken to evaluation studies such as hardness, weight variation, friability, drug content and thickness. All the parameters were within the acceptable limits. IR spectral analysis showed that there was no interaction between the drug and polymers. The in vitro release study was performed in phosphate buffer pH 7.4 at 293 nm. The in vitro release study showed that if the polymer ratio is increased, then the release of the drug is prolonged. HPMC K 100M shows a prolonged release when compared to guar gum.


2020 ◽  
Vol 21 (15) ◽  
pp. 1688-1698
Author(s):  
Germeen N.S. Girgis

Purpose: The work was performed to investigate the feasibility of preparing ocular inserts loaded with Poly-ε-Caprolactone (PCL) nanoparticles as a sustained ocular delivery system. Methods: First, Atorvastatin Calcium-Poly-ε-Caprolactone (ATC-PCL) nanoparticles were prepared and characterized. Then, the optimized nanoparticles were loaded within inserts formulated with Methylcellulose (MC) and Polyvinyl Alcohol (PVA) by a solvent casting technique and evaluated physically, for in-vitro drug release profile. Finally, an in-vivo study was performed on the selected formulation to prove non-irritability and sustained ocular anti-inflammatory efficacy compared with free drug-loaded ocuserts. Results: The results revealed (ATC-PCL) nanoparticles prepared with 0.5% pluronic F127 were optimized with 181.72±3.6 nm particle size, 0.12±0.02 (PDI) analysis, -27.4± 0.69 mV zeta potential and 62.41%±4.7% entrapment efficiency. Nanoparticles loaded ocuserts manifested compatibility between drug and formulation polymers. Moreover, formulations complied with average weight 0.055±0.002 to 0.143±0.023 mg, and accepted pH. ATC-PCL nanoparticles loaded inserts prepared by 5% MC showed more sustained, prolonged in-vitro release over 24h. In-vivo study emphasized non-irritability, ocular anti-inflammatory effectiveness represented by smaller lid closure scores, and statistically significant lowering in PMN count after 3h. Conclusion: These findings proposed a possibly simple, new and affordable price technique to prepare promising (ATC-PCL) nanoparticles loaded inserts to achieve sustained release with prolonged antiinflammatory efficacy.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 260 ◽  
Author(s):  
Dongwei Wan ◽  
Min Zhao ◽  
Jingjing Zhang ◽  
Libiao Luan

This study aimed to develop a novel sustained release pellet of loxoprofen sodium (LXP) by coating a dissolution-rate controlling sub-layer containing hydroxypropyl methyl cellulose (HPMC) and citric acid, and a second diffusion-rate controlling layer containing aqueous dispersion of ethyl cellulose (ADEC) on the surface of a LXP conventional pellet, and to compare its performance in vivo with an immediate release tablet (Loxinon®). A three-level, three-factor Box-Behnken design and the response surface model (RSM) were used to investigate and optimize the effects of the citric acid content in the sub-layer, the sub-layer coating level, and the outer ADEC coating level on the in vitro release profiles of LXP sustained release pellets. The pharmacokinetic studies of the optimal sustained release pellets were performed in fasted beagle dogs using an immediate release tablet as a reference. The results illustrated that both the citric acid (CA) and ADEC as the dissolution- and diffusion-rate controlling materials significantly decreased the drug release rate. The optimal formulation showed a pH-independent drug release in media at pH above 4.5 and a slightly slow release in acid medium. The pharmacokinetic studies revealed that a more stable and prolonged plasma drug concentration profile of the optimal pellets was achieved, with a relative bioavaibility of 87.16% compared with the conventional tablets. This article provided a novel concept of two-step control of the release rate of LXP, which showed a sustained release both in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document