scholarly journals THE EFFECT OF STORAGE CONDITION ON VIABILITY OF LACTIC ACID BACTERIA IN PROBIOTIC PRODUCT

Author(s):  
Yuni Trisnawita ◽  
Jansen Silalahi ◽  
Siti Morin Sinaga

Objective: The aim of this study was to determine the effect of storage condition on viability of lactic acid bacteria (LAB) in probiotic product.Methods: Four different of probiotic products used were A (Lacto B), B (Rillus), C (Interlac), and D (Lacbon) containing single or mixed LAB. The product was stored at temperature of 4°C and 28°C for 28 days. Viability test of LAB was done by counting a number of colony bacteria that live on de man, Rogosa, and Sharpe Agar.Results: The results of the study showed that counts of the LAB colonies in product A were less at the label (5.04×107 cfu/sachet), whereas in products B, C, and D were matching with the label. Storage at a temperature of 28°C for 28 days showed significant loss on the viability of LAB in product C (p<0.05).Conclucion: Storage temperature affecting on viability of LAB in probiotic product where storage at temperature 4°C is higher than 28°C for 28 days.

2011 ◽  
Vol 74 (4) ◽  
pp. 631-635 ◽  
Author(s):  
VASILIKI A. BLANA ◽  
AGAPI I. DOULGERAKI ◽  
GEORGE-JOHN E. NYCHAS

Fifteen fingerprints (assigned to Leuconostoc spp., Leuconostoc mesenteroides, Weissella viridescens, Leuconostoc citreum, and Lactobacillus sakei) of 89 lactic acid bacteria (LAB) isolated from minced beef stored under modified atmospheres at various temperatures were screened for their ability to exhibit autoinducer-2 (AI-2)–like activity under certain growth conditions. Cell-free meat extracts (CFME) were collected at the same time as the LAB isolates and tested for the presence of AI-2–like molecules. All bioassays were conducted using the Vibrio harveyi BAA-1117 (sensor 1−, sensor 2+) biosensor strain. The possible inhibitory effect of meat extracts on the activity of the biosensor strain was also evaluated. AI-2–like activity was observed for Leuconostoc spp. isolates, but none of the L. sakei strains produced detectable AI-2–like activity. The AI-2–like activity was evident mainly associated with the Leuconostoc sp. B 233 strain, which was the dominant isolate recovered from storage at 10 and 15°C and at the initial and middle stages of storage at chill temperatures (0 and 5°C). The tested CFME samples displayed low AI-2–like activity and inhibited AI-2 activity regardless of the indigenous bacterial populations. The LAB isolated during meat spoilage exhibited AI-2–like activity, whereas the LAB strains retrieved depended on storage time and temperature. The production of AI-2–like molecules may affect the dominance of different bacterial strains during storage. The results provide a basis for further research concerning the effect of storage temperature on the expression of genes encoding AI-2 activity and on the diversity of the ephemeral bacterial population.


2015 ◽  
Vol 4 (4) ◽  
pp. 773-777 ◽  
Author(s):  
Yasunori Yonejima ◽  
Keiko Hisa ◽  
Marina Kawaguchi ◽  
Hiroaki Ashitani ◽  
Toshiyuki Koyama ◽  
...  

2011 ◽  
Vol 51 (7) ◽  
pp. 597 ◽  
Author(s):  
M. B. Ghali ◽  
P. T. Scott ◽  
G. A. Alhadrami ◽  
R. A. M. Al Jassim

The camel is emerging as a new and important animal in the Australian livestock industry. However, little is known regarding the microbial ecosystem of the gastrointestinal tract of this ruminant-like animal. This study was carried out to determine the diversity of lactic acid-producing and lactic acid-utilising bacteria in the foregut of the feral camel (Camelus dromedarius) in Australia. Putative lactic acid bacteria were isolated from the foregut contents of camels by culturing on De Man, Rogosa, Sharpe and lactic acid media. Identification of representative isolates was based on the analysis of 16S rRNA gene sequences. Fermentation end products of glucose (i.e. volatile fatty acids and lactate) were also measured in vitro. The key predominant bacteria identified in this study were closely related to Streptococcus bovis, Selenomonas ruminantium, Butyrivibrio fibrisolvens, Lachnospira pectinoschiza and Prevotella ruminicola. The main L-lactate producers were those isolates closely related to S. bovis, S. ruminantium and Lactococcus garvieae, while the efficient lactate utilisers were S. ruminantium-related isolates. D-lactate was produced by isolates closely related to either L. pectinoschiza or S. ruminantium. The predominant bacteria isolated and characterised in this study are identical and/or closely related to those typically found in true ruminants (e.g. S. ruminantium, B. fibrisolvens, S. bovis). In addition, some of the bacteria isolated represent novel species of Lachnospira and Clostridium in the context of lactic acid bacteria from a large herbivorous host. The results from this study have contributed to our understanding and provide opportunities to reduce foregut acidosis in the camel.


2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Dwi Aryanti Nur Utami ◽  
Sri Rejeki Retna Pertiwi ◽  
Nurul Syarifah

Kefir is one of probiotic product which contains yeast and lactic acid bacteria as the agent of fermentation and a good intestinal microflora. It makes kefir really good for health. But kefir usually made from animal milk, which make the kefir contains high fat. And to make it become low fat product, it should made from plant-based milk. Bogor was famous with its Bambara groundnut, the citizen always called kacang bogor. But they only use it just to be a snack, so to make them become more valuable, it can be made into kefir. The aim of this research was to find out the best formulation of Bambara groundnut kefir with a variety of fermentation time and concentration of starter. There were two kind of raw material that was used, such as 100% Bambara groundnut extract and Bambara groundnut extract with skim milk addition (50:50). The raw material were added with 10% sugar and kefir grains / starter with variety concentration about 2.5%, 5%, and 7.5%. The fermentation process was carried out for 24, 48, and 72 hours. The results showed that the best formulation of the kefir were made from 100% Bambara groundnut with 7.5% starter addition and 72 hours of fermentation. It showed that Bambara groundnut kefir has low fat about 2,43% and the amount of lactic acid bacteria and yeast about 1,5x109 CFU/gram and 4,3x107 CFU/gram respectively. The protein content of it still low, it was about 1,87%.


1995 ◽  
Vol 58 (3) ◽  
pp. 284-288 ◽  
Author(s):  
ANGELIA R. KRIZEK ◽  
J. SCOTT SMITH ◽  
RANDALL K. PHEBUS

When fresh, vacuum-packaged, meat products are stored for extended periods of time, undesirable changes, due to naturally occurring microbial flora present during packaging occur. Lactobacillus spp. are known to form amines through the decarboxylation of free amino acids. Tyramine and histamine can cause intoxication in individuals taking monoamine oxidase-inhibiting drugs. This study determined 1) the effect of storage temperature on bacterial growth and biogenic amine production in vacuum-packaged beef subprimals, 2) the effect of washing subprimals with water to remove tyramine contamination, and 3) the penetration of tyramine from the surface of the subprimal. Inside rounds were vacuum packaged and stored at −2°C or 2°C. Samples were evaluated over 100 days for amine concentrations, total psychrotrophic counts and lactic acid bacteria. Tyramine, putrescine and cadaverine were detected in this study. Significant levels (15 μg/g) of tyramine were detected at 20 days of storage at 2°C and 40 days of storage at −2°C. Putrescine and cadaverine were detected first at 40 days of storage at 2°C and 60 days of storage at −2°C. Both treatment groups contained about 130 μg/g of tyramine at 100 days of storage. Psychrotrophic plate counts and lactic acid bacteria counts were initially 103 colony forming units (CFU)/cm2 and ranged from 106–107 CFU/cm2 at 100 days of storage. Even though tyramine was evident at a depth of 6 mm from the surface of the cut, one-third of the amine was removed by washing the subprimal with tap water.


2006 ◽  
Vol 69 (11) ◽  
pp. 2648-2663 ◽  
Author(s):  
ELEFTHERIOS H. DROSINOS ◽  
MARIOS MATARAGAS ◽  
SLAVICA VESKOVIĆ-MORAČANIN ◽  
JUDIT GASPARIK-REICHARDT ◽  
MIRZA HADŽIOSMANOVIĆ ◽  
...  

Listeria monocytogenes NCTC10527 was examined with respect to its nonthermal inactivation kinetics in fermented sausages from four European countries: Serbia-Montenegro, Hungary, Croatia, and Bosnia-Herzegovina. The goal was to quantify the effect of fermentation and ripening conditions on L. monocytogenes with the simultaneous presence or absence of bacteriocin-producing lactic acid bacteria (i.e., Lactobacillus sakei). Different models were used to fit the experimental data and to calculate the kinetic parameters. The best model was chosen based on statistical comparisons. The Baranyi model was selected because it fitted the data better in most (73%) of the cases. The results from the challenge experiments and the subsequent statistical analysis indicated that relative to the control condition the addition of L. sakei strains reduced the time required for a 4-log reduction of L. monocytogenes (t4D). In contrast, the addition of the bacteriocins mesenterocin Y and sakacin P decreased the t4D values for only the Serbian product. A case study for risk assessment also was conducted. The data of initial population and t4D collected from all countries were described by a single distribution function. Storage temperature, packaging method, pH, and water activity of the final products were used to calculate the inactivation of L. monocytogenes that might occur during storage of the final product (U.S. Department of Agriculture Pathogen Modeling Program version 7.0). Simulation results indicated that the addition of L. sakei strains significantly decreased the simulated L. monocytogenes concentration of ready-to-eat fermented sausages at the time of consumption.


2006 ◽  
Vol 14 (3) ◽  
pp. 249-257 ◽  
Author(s):  
LUÍS AUGUSTO NERO ◽  
VANERLI BELOTI ◽  
MÁRCIA DE AGUIAR FERREIRA BARROS ◽  
MARIA BEATRIZ TASSINARI ORTOLANI ◽  
RONALDO TAMANINI ◽  
...  

Author(s):  
Xianqin Yang ◽  
Hui Wang ◽  
Scott Hrycauk ◽  
Mark D. Klassen

We investigated the impact of peroxyacetic acid (PAA; 200 ppm) spray on the microbiota and shelf life of commercial vacuum packed beef stored at chiller temperatures. Ribeye cuts (n=147) were collected from a local beef plant on the day of production for two consecutive days, with one set collected at the start of work with the PAA spray nozzles turned off (control) and during the routine production with the PAA spray nozzles turned on (PAA) on each day. Packs were stored at 4, 2 and -1°C for up to 34, 104 and 180 days, and sampled at appropriate intervals for sensory assessment, microbial enumeration and microbial profiling by 16S rRNA gene amplicon analysis. Treatment with PAA did not affect the initial meat pH, the initial numbers of total aerobes, lactic acid bacteria or Enterobacteriaceae (p>0.05) before storage; however, it delayed the onset of spoilage by 7, 21 and 54 days at 4, 2 and -1°C, respectively. Square root models of the variation of growth rate with temperature indicated lactic acid bacteria grew faster and Enterobacteriaceae grew slower on PAA treated than not treated meat. Negative associations between pH and deterioration of meat during storage were observed for PAA treated meat. During storage, the microbiota were primarily dominated by Carnobacterium and Lactobacillus/Lactococcus on control meat, but by Leuconostoc on PAA treated meat. Serratia, Yersinia and Clostridium were identified by LEfSe analysis as biomarkers for control meat, the latter of which was found in high abundance in samples that had the highest spoilage scores. IMPORTANCE The findings of this study show that PAA solutions applied at low concentrations under commercial settings positively modulated the meat microbiota. It did not have bactericidal effects for beef subprimals with very low microbial load. However, it differentially impacted the members of the microbiota, which resulted in delayed onset of spoilage of vacuum packed beef subprimal stored at all three temperatures (4, 2 and -1°C). This differential impact could be through one or a combination of the following factors: favoring the growth of lactic acid bacteria which may in turn exert a competitive exclusion that might be due to production of antimicrobial compounds such as organic acids and bacteriocins; exerting synergistic antimicrobial effects with low temperatures against members of Enterobacteriaceae; direct or indirect inhibitory effects against members of clostridia. These findings not only advance our understanding of the microbial ecology of vacuum packed meat stored at chiller temperatures, but also suggest bacteriostatic concentrations of antimicrobial interventions can be explored for shelf life extension.


Sign in / Sign up

Export Citation Format

Share Document