Quantifying Nonthermal Inactivation of Listeria monocytogenes in European Fermented Sausages Using Bacteriocinogenic Lactic Acid Bacteria or Their Bacteriocins: A Case Study for Risk Assessment

2006 ◽  
Vol 69 (11) ◽  
pp. 2648-2663 ◽  
Author(s):  
ELEFTHERIOS H. DROSINOS ◽  
MARIOS MATARAGAS ◽  
SLAVICA VESKOVIĆ-MORAČANIN ◽  
JUDIT GASPARIK-REICHARDT ◽  
MIRZA HADŽIOSMANOVIĆ ◽  
...  

Listeria monocytogenes NCTC10527 was examined with respect to its nonthermal inactivation kinetics in fermented sausages from four European countries: Serbia-Montenegro, Hungary, Croatia, and Bosnia-Herzegovina. The goal was to quantify the effect of fermentation and ripening conditions on L. monocytogenes with the simultaneous presence or absence of bacteriocin-producing lactic acid bacteria (i.e., Lactobacillus sakei). Different models were used to fit the experimental data and to calculate the kinetic parameters. The best model was chosen based on statistical comparisons. The Baranyi model was selected because it fitted the data better in most (73%) of the cases. The results from the challenge experiments and the subsequent statistical analysis indicated that relative to the control condition the addition of L. sakei strains reduced the time required for a 4-log reduction of L. monocytogenes (t4D). In contrast, the addition of the bacteriocins mesenterocin Y and sakacin P decreased the t4D values for only the Serbian product. A case study for risk assessment also was conducted. The data of initial population and t4D collected from all countries were described by a single distribution function. Storage temperature, packaging method, pH, and water activity of the final products were used to calculate the inactivation of L. monocytogenes that might occur during storage of the final product (U.S. Department of Agriculture Pathogen Modeling Program version 7.0). Simulation results indicated that the addition of L. sakei strains significantly decreased the simulated L. monocytogenes concentration of ready-to-eat fermented sausages at the time of consumption.

2008 ◽  
Vol 71 (3) ◽  
pp. 629-633 ◽  
Author(s):  
K. M. GAILUNAS ◽  
K. E. MATAK ◽  
R. R. BOYER ◽  
C. Z. ALVARADO ◽  
R. C. WILLIAMS ◽  
...  

Ready-to-eat meat products have been implicated in several foodborne listeriosis outbreaks. Microbial contamination of these products can occur after thermal processing when products are chilled in salt brines. The objective of this study was to evaluate UV radiation on the inactivation of Listeria monocytogenes and lactic acid bacteria in a model brine chiller system. Two concentrations of brine (7.9% [wt/wt] or 13.2% [wt/wt]) were inoculated with a ~6.0 log CFU/ml cocktail of L. monocytogenes or lactic acid bacteria and passed through a UV treatment system for 60 min. Three replications of each bacteria-and-brine combination were performed and resulted in at least a 4.5-log reduction in microbial numbers in all treated brines after exposure to UV light. Bacterial populations were significantly reduced after 5 min of exposure to UV light in the model brine chiller compared with the control, which received no UV light exposure (P < 0.05). The maximum rate of inactivation for both microorganisms in treated brines occurred between minutes 1 and 15 of UV exposure. Results indicate that in-line treatment of chill brines with UV light reduces the number of L. monocytogenes and lactic acid bacteria.


2006 ◽  
Vol 12 (4) ◽  
pp. 287-295 ◽  
Author(s):  
D. Djenane ◽  
L. Martínez ◽  
A. Sánchez-Escalante ◽  
L. Montañés ◽  
D. Blanco ◽  
...  

Beef steaks were inoculated with one or other of two protective strains of lactic acid bacteria, the bacteriocinogenic Lactobacillus sakei CTC 372 or the uncharacterised Lactobacillus CTC 711. They were stored under modified atmospheres (20–40% CO2). Inoculation of meat with both strains inhibited the growth of the spoilage bacteria. Neither CO2 in the pack atmosphere, inoculation with protective strains, nor a combination of both, affected formation of metmyoglobin or the development of off-odours. The formation of metmyoglobin in meat pigments and the sensory odour scores were compatible to those of fresh meat which had not undergone either oxidative deterioration or microbial spoilage. Listeria monocytogenes were inhibited in broth by meat surface microbiota containing either of the protective strains. With an initial population of 5.6 log cfu/mL, after 7 days incubation at 3°C, Listeria monocytogenes were recovered at log mean population of 2.8 log cfu/mL when neither protective strain was present. At 8°C, the population of Listeria monocytogenes recovered were reduced by about 2.5 or 1.5 log cfu/mL in the presence of Lactobacillus sakei CTC 372 or Lactobacillus CTC 711, respectively. At 25°C, the population of Listeria monocytogenes recovered from broth containing either protective strain were about 5 log cfu/mL less than the population recovered from broth containing Listeria monocytogenes only.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1217
Author(s):  
Giannina Brugnini ◽  
Soledad Rodríguez ◽  
Jesica Rodríguez ◽  
Caterina Rufo

The objective of this study was to test the effect of the combined application of lactic acid (0–5%) (LA) and UV-C light (0–330 mJ/cm2) to reduce Listeria monocytogenes and lactic acid bacteria (LAB) on beef without major meat color (L *, a *, b *) change and its impact over time. A two-factor central composite design with five central points and response surface methodology (RSM) were used to optimize LA concentration and UV-C dose using 21 meat pieces (10 g) inoculated with L. monocytogenes (LM100A1). The optimal conditions were analyzed over 8 weeks. A quadratic model was obtained that predicted the L. monocytogenes log reduction in vacuum-packed beef treated with LA and UV-C. The maximum log reduction for L. monocytogenes (1.55 ± 0.41 log CFU/g) and LAB (1.55 ± 1.15 log CFU/g) with minimal impact on meat color was achieved with 2.6% LA and 330 mJ/cm2 UV-C. These conditions impaired L. monocytogenes growth and delayed LAB growth by 2 weeks in vacuum-packed meat samples throughout 8 weeks at 4 °C. This strategy might contribute to improving the safety and shelf life of vacuum-packed beef with a low impact on meat color.


2008 ◽  
Vol 71 (7) ◽  
pp. 1366-1371 ◽  
Author(s):  
ANTONIO BEVILACQUA ◽  
FRANCESCA CIBELLI ◽  
DANIELA CARDILLO ◽  
CLELIA ALTIERI ◽  
MILENA SINIGAGLIA

The metabiotic effects of Fusarium proliferatum, F. avenaceum, and F. oxysporum on Escherichia coli O157:H7 and Listeria monocytogenes in fresh tomatoes were investigated. Tomatoes were preinoculated with the molds and incubated at 15°C for 7 days; then they were inoculated separately with the pathogens, packaged in air and modified atmosphere (5% O2, 30% CO2, and 65% N2), and stored at 4, 8, and 12°C for 9 days. The cell loads of pathogens and lactic acid bacteria and the pH were evaluated periodically. The data were modeled through some different mathematical models to assess the shoulder length, i.e., the time before the beginning of the exponential death phase, the 1-log reduction time (δ), and the pathogen death time (δstand). The preinoculation of tomatoes with the molds enhanced the survival of E. coli O157:H7 by prolonging shoulder length and δ parameters; this effect, however, was not observed for L. monocytogenes. pH values did not undergo significant changes within the storage time, and the lactic acid bacteria increased from 5 to 7 log CFU/g, without significant differences among the storage temperatures or the packaging atmospheres. The results of this research showed that the use of fresh tomatoes colonized by fusaria (even if the contamination is not visible) could increase significantly the risk of outbreaks due to some pathogens that could be on the surface of fruits and vegetables as a result of cross-contamination at home or incorrect postharvest operations.


2020 ◽  
Vol 65 (No. 1) ◽  
pp. 23-30 ◽  
Author(s):  
Heping Zhao ◽  
Feike Zhang ◽  
Jun Chai ◽  
Jianping Wang

The present study aimed to investigate the effect of probiotic lactic acid bacteria (LAB) addition on Listeria monocytogenes translocation and its toxin listeriolysin O (LLO), proinflammatory factors, immune organ indexes and serum immunoglobulins in farmed rabbits. Five treatments included negative control (NC), positive control (PC) with L. monocytogenes infection and supplemental LAB at 3.0 × 10<sup>6 </sup>(low-LAB, L-LAB), 3.0 × 10<sup>8</sup> (medium-LAB, M-LAB) and 3.0 × 10<sup>10 </sup>(high-LAB, H-LAB) CFU/kg of diet, respectively. The LAB was a mixture of equal amounts of Lactobacillus acidophilus (ACCC11073), Lactobacillus plantarum (CICC21863) and Enterococcus faecium (CICC20430). A total of 180 weaned rabbits (negative for L. monocytogenes) were randomly assigned to 5 groups with 6 replicates of 6 rabbits each in response to the 5 treatments. L. monocytogenes infection occurred on the first day of feeding trial and dietary LAB supplementation lasted for 14 days. The results showed that on days 7 and 14 post administration, L. monocytogenes in caecum, liver, spleen and lymph nodes was reduced in M-LAB and H-LAB compared to PC (P &lt; 0.05), and linear and quadratic reducing trends were found in liver on day 7 (P ≤ 0.002). On day 14, mucosa LLO mRNA expression and serum TNFα, IL1β and IFNγ were reduced in the three LAB treatments (P &lt; 0.05), and linear and quadratic trends were found on TNFα and IL1β (P ≤ 0.025); indexes of thymus and spleen, serum IgA and IgG were increased in the LAB treatments (P &lt; 0.05). It is concluded that LAB can be used to alleviate L. monocytogenes infection and to improve the immune function of farmed animals.


Talanta ◽  
2016 ◽  
Vol 153 ◽  
pp. 111-119 ◽  
Author(s):  
Giorgia Foca ◽  
Carlotta Ferrari ◽  
Alessandro Ulrici ◽  
Giorgia Sciutto ◽  
Silvia Prati ◽  
...  

2002 ◽  
Vol 65 (8) ◽  
pp. 1215-1220 ◽  
Author(s):  
CHIA-MIN LIN ◽  
SARAH S. MOON ◽  
MICHAEL P. DOYLE ◽  
KAY H. McWATTERS

Iceberg lettuce is a major component in vegetable salad and has been associated with many outbreaks of foodborne illnesses. In this study, several combinations of lactic acid and hydrogen peroxide were tested to obtain effective antibacterial activity without adverse effects on sensory characteristics. A five-strain mixture of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis, and Listeria monocytogenes was inoculated separately onto fresh-cut lettuce leaves, which were later treated with 1.5% lactic acid plus 1.5% hydrogen peroxide (H2O2) at 40°C for 15 min, 1.5% lactic acid plus 2% H2O2 at 22°C for 5 min, and 2% H2O2 at 50°C for 60 or 90 s. Control lettuce leaves were treated with deionized water under the same conditions. A 4-log reduction was obtained for lettuce treated with the combinations of lactic acid and H2O2 for E. coli O157:H7 and Salmonella Enteritidis, and a 3-log reduction was obtained for L. monocytogenes. However, the sensory characteristics of lettuce were compromised by these treatments. The treatment of lettuce leaves with 2% H2O2 at 50°C was effective not only in reducing pathogenic bacteria but also in maintaining good sensory quality for up to 15 days. A ≤4-log reduction of E. coli O157:H7 and Salmonella Enteritidis was achieved with the 2% H2O2 treatment, whereas a 3-log reduction of L. monocytogenes was obtained. There was no significant difference (P &gt; 0.05) between pathogen population reductions obtained with 2% H2O2 with 60- and 90-s exposure times. Hydrogen peroxide residue was undetectable (the minimum level of sensitivity was 2 ppm) on lettuce surfaces after the treated lettuce was rinsed with cold water and centrifuged with a salad spinner. Hence, the treatment of lettuce with 2% H2O2 at 50°C for 60 s is effective in initially reducing substantial populations of foodborne pathogens and maintaining high product quality.


2010 ◽  
Vol 73 (4) ◽  
pp. 620-630 ◽  
Author(s):  
ABANI K. PRADHAN ◽  
RENATA IVANEK ◽  
YRJÖ T. GRÖHN ◽  
ROBERT BUKOWSKI ◽  
IFIGENIA GEORNARAS ◽  
...  

The objective of this study was to estimate the relative risk of listeriosis-associated deaths attributable to Listeria monocytogenes contamination in ham and turkey formulated without and with growth inhibitors (GIs). Two contamination scenarios were investigated: (i) prepackaged deli meats with contamination originating solely from manufacture at a frequency of 0.4% (based on reported data) and (ii) retail-sliced deli meats with contamination originating solely from retail at a frequency of 2.3% (based on reported data). Using a manufacture-to-consumption risk assessment with product-specific growth kinetic parameters (i.e., lag phase and exponential growth rate), reformulation with GIs was estimated to reduce human listeriosis deaths linked to ham and turkey by 2.8- and 9-fold, respectively, when contamination originated at manufacture and by 1.9- and 2.8-fold, respectively, for products contaminated at retail. Contamination originating at retail was estimated to account for 76 and 63% of listeriosis deaths caused by ham and turkey, respectively, when all products were formulated without GIs and for 83 and 84% of listeriosis deaths caused by ham and turkey, respectively, when all products were formulated with GIs. Sensitivity analyses indicated that storage temperature was the most important factor affecting the estimation of per annum relative risk. Scenario analyses suggested that reducing storage temperature in home refrigerators to consistently below 7°C would greatly reduce the risk of human listeriosis deaths, whereas reducing storage time appeared to be less effective. Overall, our data indicate a critical need for further development and implementation of effective control strategies to reduce L. monocytogenes contamination at the retail level.


Author(s):  
Roseline Eleojo Kwasi ◽  
Iyanuoluwa Gladys Aremu ◽  
Qudus Olamide Dosunmu ◽  
Funmilola A. Ayeni

Background: Ogi constitutes a rich source of lactic acid bacteria (LAB) with associated health benefits to humans through antimicrobial activities. However, the high viability of LAB in Ogi and its supernatant (Omidun) is essential. Aims: This study was carried out to assess the viability of LAB in various forms of modified and natural Ogi and the antimicrobial properties of Omidun against diarrhoeagenic E coli. Methods and Material: The viability of LAB was assessed in fermented Ogi slurry and Omidun for one month and also freeze-dried Ogi with and without added bacterial strains for two months. A further 10 days viability study of modified Omidun, refrigerated Omidun, and normal Ogi was performed. The antimicrobial effects of modified Omidun against five selected strains of diarrhoeagenic E. coli (DEC) were evaluated by the co-culture method. Results: Both drying methods significantly affected carotenoids and phenolic compounds. The Ogi slurry had viable LAB only for 10 days after which, there was a succession of fungi and yeast. Omidun showed 2 log10cfu/ml reduction of LAB count each week and the freeze-dried Ogi showed progressive reduction in viability. Refrigerated Omidun has little viable LAB, while higher viability was seen in modified Omidun (≥2 log cfu/ml) than normal Omidun. Modified Omidun intervention led to 2-4 log reduction in diarrhoeagenic E. coli strains and total inactivation of shigella-toxin producing E. coli H66D strain in co-culture. Conclusions: The consumption of Ogi should be within 10 days of milling using modified Omidun. There are practical potentials of consumption of Omidun in destroying E. coli strains implicated in diarrhea. Keywords: Ogi, Omidun, lactic acid bacteria, diarrhoeagenic Escherichia coli strains, Viability.


Sign in / Sign up

Export Citation Format

Share Document