scholarly journals SELF-NANO EMULSIFYING DRUG DELIVERY SYSTEM OF EFAVIRENZ: FORMULATION, IN VITRO EVALUATION AND CHARACTERIZATION

Author(s):  
PAMU SANDHYA

Objective: The main objective of this study was to preparation and evaluation of efavirenz (EFV) to enhance its solubility and dissolution rate by self-emulsifying drug delivery system. Methods: EFV self-emulsifying drug delivery systems (SNEDDS) were formulated using different oils, surfactant, and co-surfactant. Peceol, Tween 20, and Capmul MCM were used as oil, surfactant, and co-surfactant, respectively, followed by the evaluation by the performance of different tests such as visual observation, solubility studies, thermodynamic stability study, transmittance studies, drug content, and in-vitro release study. Results: Fourier-transform infrared studies revealed negligible drug and polymer interaction. From the phase diagram, it was observed that self-emulsifying region was enhanced with increasing surfactant and co-surfactant concentrations with oil. F13 was selected as optimized formulation on the basis of physicochemical parameters, particle size, and in-vitro dissolution studies with the release of 98.39±5.10% drug in 1 hour. The optimized formulation size was found to be 156.7 nm as mean droplet size and Z-Average of 808.6 nm with -18.3 mV as zeta potential. Conclusion: The study demonstrated that SNEDDS was a promising strategy to enhance the dissolution rate of EFV by improving solubility.

Author(s):  
SABITRI BINDHANI ◽  
SNEHAMAYEE MOHAPATRA ◽  
RAJAT KUMAR KAR

Objective: The objective of this work was to improve the solubility and dissolution rate of Nifedipine by preparing a solid-self micro emulsifying drug delivery system (Solid-smedds). Methods: Liquid-self-emulsifying drug delivery system formulations were prepared by using linseed oil as oil, tween 80 as a surfactant and PEG 400 as cosurfactant. Components were selected by solubility screening studies and the self-emulsifying region was identified by the pseudo-ternary phase diagram. Thermodynamic stability study was performed for the determination of stable liquid-smedds formulation. These formulations were evaluated for self-emulsification time, drug content analysis, robustness to dilution test, particle size analysis, in vitro diffusion study, and Stability study. Solid self-micro emulsifying formulations were prepared by using aerosil-200 at a different ratio. Lf9S (0.65:1) was selected due to its highest drug entrapment efficiency and a decrease in particle size. It was selected for further studies into DSC, SEM, FTIR, and XRD analysis. Results: DSC and XRD result shows that the drug within the formulation was in the amorphous state. From the SEM study, it was observed that the drug has been uniformly distributed and having a smooth surface. From the in vitro dissolution study, it improved the dissolution rate of nifedipine which was 98.70% of drug release where pure drug release only 6.72%. Conclusion: In conclusion, a solid self-micro emulsifying drug delivery system is improved the solubility and drug release rate but also improved the stability of the formulation.


Author(s):  
JAMEER A TAMBOLI ◽  
SHRINIVAS K MOHITE

Objective: The objective of the present study was to develop solid self-microemulsifying drug delivery system (S-SMEDDS) of diacerein (DCN) for enhancement of dissolution rate. Methods: Three batches of liquid SMEDDS were prepared using oleic acid, Tween 80, and polyethylene glycol 200 as oil, surfactant, and cosurfactant, respectively. Microemulsion region was recognized by constructing a pseudoternary phase diagram containing a different proportion of oil, surfactant, and cosurfactant. Prepared liquid SMEDDS was evaluated for thermodynamic stability study, dispersibility tests, globule size, zeta potential, and viscosity. Liquid SMEDDS was then converted to S-SMEDDS by adsorption technique using Neusilin US2 as a solid carrier. Prepared S-SMEDDS was evaluated for different micromeritic properties, drug content, reconstitution properties, in vitro dissolution study, Fourier transform infrared, and scanning electron microscopy. Results: The results showed that all batches of liquid SMEDDS were found to be thermodynamically stable. Reconstitution properties of S-SMEDDS showed spontaneous microemulsification with globule size 0.271 μm and −16.18 mV zeta potential. From the results of in vitro dissolution study, it was found that the release of DCN was significantly increased as compared with plain DCN. Conclusion: The study concluded that dissolution rate of poorly water-soluble drug like DCN can be increased by developing S-SMEDDS formulation.


2020 ◽  
Vol 15 ◽  
Author(s):  
Navdeep Gahlawat ◽  
Ravinder Verma ◽  
Deepak Kaushik

Background: Olmesartan medoxomil is an angiotensin II receptor blocker antihypertensive drug which has low oral bioavailability because of poor aqueous solubility. Objective: The objective of present research is development and optimization of Olmesartan medoxomil loaded self-microemulsifying drug delivery system by D-optimal mixture design to improve its dissolution rate. Methods: Solubility of Olmesartan medoxomil was determined in different oils, surfactants and co-surfactants. Pseudo ternary diagram was constructed for identification of self-microemulsification region. The D-optimal mixture design was employed for optimization of SMEDDS formulations wherein the factors optimized were the concentration of oil (X1), surfactant (X2) and co-surfactant (X3) and the response were globule size (Y1) and dissolution rate (Y2). Developed self-microemulsifying drug delivery system were further assessed for self-emulsification time, drug loading capacity, transparency, globule size, in vitro dissolution and comparative in vitro dissolution testing of optimized formulation with pure medicament and commercially available product. Results: The application of D-optimal mixture design resulted in 14 batches out of which F-5 was found to be the optimized batch which contained Olmesartan medoxomil (20 mg), Capmul MCM EP (23% v/v), Kolliphore EL (49% v/v) and Transcutol P (28% v/v) having globule size of 105 nm, 94.7% dissolution within 30 minutes. In vitro dissolution rate of the drug from SMEDDS was appreciably higher than that of pure drug and marketed product. Conclusion: Olmesartan medoxomil self-microemulsifying drug delivery system was successfully developed and this approach could prove to be suitable for improvement of dissolution rate of BCS II class drugs.


Author(s):  
Dinesh Kaushik ◽  
Jyoti Malik ◽  
Satish Sardana ◽  
Chisa Matsubara

Oral route is the most preferred route of drug administration due to its easy accessibility, intake, and wide range of choices making it economical. Currently, greater than 60% of marketed drugs are oral products. Over 90% of therapeutic compounds given orally areknown to possess oral bioavailability limitations. Therefore, there is a need to explore various approaches that can be used to improve oral drug bioavailability besides using physical and chemical means. The objective of this study is to prepare a formulation i.e. self microemulsifying drug delivery system (SMEDDS) of nifedipine with the intention to improve the increase dissolution rate (solubility). This will ensure the quick absorption and uniform bioavailability of nifedipine. Selection of oils, surfactants and co-surfactants was done by determining % transparency and on the basis of compatibility studies by FTIR spectra analysis. Different SMEDDS formulation were prepared of different ratio of oil:surfactantmix (1:9,2:8,3:7,4:6,5:5,6:4,7:3,8:2,9:1) and different ratio of surfactants : cosurfactants. Pseudo ternary phase diagram were constructed by water titration method to obtain a particle micro-emulsion region (on the basis of clarity and transparency). The formulation B-I was optimized because of maximum transparency (87.35%) and maximum % drug entrapment (95.32%). The average droplet size and zeta potential was found 86.05 and -0.189. The solubility of nifedipine increase in SMEDDS formulation upto72.17%.From in vitro dissolution study it was proved that SMEDDS formulation releases drug at faster rate, thus the objective of increase solubility and hence the better dissolution rate for uniform bioavailability via SMEDDS formulation of nifedipine was successfully achieved.


2015 ◽  
Vol 7 (1-2) ◽  
pp. 65-74
Author(s):  
K. Latha ◽  
V. V. Srikanth ◽  
S. A. Sunil ◽  
N. R. Srinivasa ◽  
M. U. Uhumwangho ◽  
...  

The objective of this investigation is to study the applicability of gum karaya, the natural gum for the preparation and in vitro evaluation of losartan potassium, as Chronotherapeutic Drug Delivery System (ChDDS). The compression-coated timed-release tablets (CCT) containing losartan potassium in the core tablet were prepared by dry coating technique with different ratios of gum karaya as the outer coat. The parameters investigated were tensile strength, friability, in vitro dissolution studies and drug concentration. The optimized formulation was further characterized by powder XRD and FTIR to investigate interactions and no interactions observed. The tensile strength and friability of all the CCT were between 1.06-1.23 MN/m2 and < 0.3% respectively.  All the CCT showed a clear lag time before a burst release of drug. However, the lag time of drug release increased as the amount of gum karaya in the outer layer increased. For instance, the lag time of LGK1, LGK2, LGK3, LGK4, LGK5, LGK6 and LGK7 were 16, 10.5, 5.5, 3, 2, 1.5 and 0.5 hrs respectively.  The drug content of all the CCT was >98%. Formulation LGK3 was taken as an optimized formulation which can be exploited to achieve ChDDS of losartan potassium for the treatment of hypertension. 


2009 ◽  
Vol 25 (2) ◽  
pp. 161-177 ◽  
Author(s):  
Bhavesh D. Kevadiya ◽  
Ghanshyam V. Joshi ◽  
Hasmukh A. Patel ◽  
Pravin G. Ingole ◽  
Haresh M. Mody ◽  
...  

Author(s):  
Kanuri Lakshmi Prasad ◽  
Kuralla Hari

Objective: To enhance solubility and dissolution rate of budesonide through development of solid self-nanoemulsifying drug delivery system (S-SNEDDS). Methods: Liquid self-nanoemulsifying drug delivery systems (L-SNEDDS) were prepared and ternary phase diagram was constructed using Origin pro 8. Liquid self-nanoemulsifying formulation LF2 having 20% oil and 80% of surfactant/co-surfactant was optimized from the three formulations (LF1-LF3) to convert in to solid, through various characterization techniques like self-emulsification, in vitro drug release profile and drug content estimation. The prepared L-SNEDDS converted into S-SNEDDS, SF1-SF6 by adsorption technique using Aerosil 200, Neusilin US2, and Neusilin UFL2 to improve flowability, compressibility and stability. Results: Formulation LF2 exhibited globule size of 82.4 nm, PDI 0.349 and Zeta potential -28.6 mV with drug indicating the stability and homogeneity of particles. The optimized formulation SF4 containing Neusilin UFL2 was characterized by DSC, FTIR, X-Ray diffraction studies and found no incompatibility and no major shifts were noticed. Formulation SF4 released 100 % drug in 20 min against pure drug release of 47 % in 60 min. Regardless of the form (i.e. liquid or solid) similar performance of emulsification efficiency is observed. Conclusion: The results demonstrated that the technique of novel solid self-nanoemulsifying drug delivery system can be employed to enhance the solubility and dissolution rate of poorly water-soluble drug budesonide.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2920
Author(s):  
Ameeduzzafar Zafar ◽  
Syed Sarim Imam ◽  
Nabil K. Alruwaili ◽  
Omar Awad Alsaidan ◽  
Mohammed H. Elkomy ◽  
...  

Hypertension is a cardiovascular disease that needs long-term medication. Oral delivery is the most common route for the administration of drugs. The present research is to develop piperine self-nanoemulsifying drug delivery system (PE-SNEDDS) using glyceryl monolinoleate (GML), poloxamer 188, and transcutol HP as oil, surfactant, and co-surfactant, respectively. The formulation was optimized by three-factor, three-level Box-Behnken design. PE-SNEDDs were characterized for globule size, emulsification time, stability, in-vitro release, and ex-vivo intestinal permeation study. The optimized PE-SNEDDS (OF3) showed the globule size of 70.34 ± 3.27 nm, percentage transmittance of 99.02 ± 2.02%, and emulsification time of 53 ± 2 s Finally, the formulation OF3 was transformed into solid PE-SNEDDS (S-PE-SNEDDS) using avicel PH-101 as adsorbent. The reconstituted SOF3 showed a globule size of 73.56 ± 3.54 nm, PDI of 0.35 ± 0.03, and zeta potential of −28.12 ± 2.54 mV. SEM image exhibited the PE-SNEDDS completely adsorbed on avicel. Thermal analysis showed the drug was solubilized in oil, surfactant, and co-surfactant. S-PE-SNEDDS formulation showed a more significant (p < 0.05) release (97.87 ± 4.89% in 1 h) than pure PE (27.87 ± 2.65% in 1 h). It also exhibited better antimicrobial activity against S. aureus and P. aeruginosa and antioxidant activity as compared to PE dispersion. The in vivo activity in rats exhibited better (p < 0.05) antihypertensive activity as well as 4.92-fold higher relative bioavailability than pure PE dispersion. Finally, from the results it can be concluded that S-PE-SNEDDS might be a better approach for the oral delivery to improve the absorption and therapeutic activity.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (06) ◽  
pp. 16-26
Author(s):  
V Suthar ◽  
◽  
M Gokel ◽  
S Butani ◽  
A Solanki

The aim of the present study was to develop self-emulsifying drug delivery system (SEDDS) of aceclofenac for potential improvement in the in vitro dissolution. The Food and Drug Control Agency (FDCA) has put more stress on the quality, safety and efficacy of the dosage form. The use of design of experiments and quality by Design (QbD) in the development of self emulsifying drug delivery system (SEDDS) containing aceclofenac is demonstrated. The optimum formulation contained Labrafil M 1944 CS, Tween 80 and Transcutol P. The systematic approach enabled us in identifying the design space. The results revealed that while devising the control strategies during manufacturing, more attention should be focused on the ratios of oil to surfactant and surfactant to co-surfactant. The drug was released at a faster rate due to a large surface area. The current approach enabled us to develop a dosage form which is economic, patient-friendly and does not require assistance of a doctor or nurse, especially at remote places at odd hours.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (08) ◽  
pp. 53-60
Author(s):  
Purushottam Patil ◽  
Malik Shaikh ◽  
Paresh Mahaparale

Solid self-micro emulsification technique is the new approach for poorly water-soluble and poorly bioavailable drugs by allowing the drug substance to be incorporated into the oil phase and thus having the ability to permeate the GI membrane to a faster extent. Oleic acid, Tween 80, methanol and colloidal silicon dioxide were used as penetrant, surfactant, co-surfactant and adsorbent, respectively. The interaction between drug and excipients was examined by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The results of DSC and FTIR studies did not reveal any possible drug-excipient interactions. The conversion of liquid self-microemulsifying drug delivery system (SMEDDS) into the solid SMEDDS increases the stability of the emulsion formulation achieved by physical adsorption of an adsorbent material. The release of drug from SMEDDS formulation is justified by in-vitro dissolution studies. SMEDDS increases the solubility of the drug and improves the bioavailability, without disturbing gastrointestinal transit. SMEDDS has the potential to provide a useful oral solid dosage form for the poorly water-soluble drug ziprasidone.


Sign in / Sign up

Export Citation Format

Share Document