scholarly journals ANALYTICAL METHOD DEVELOPMENT AND METHOD VALIDATION FOR DETERMINATION ASSAY AND CONTENT UNIFORMITY OF LEVONORGESTREL BY REVERSED-PHASE HIGHPERFORMANCE LIQUID CHROMATOGRAPHY

Author(s):  
Vikas kumar Pal ◽  
Yogendra Pal

Object: The main objective of the complete study is to develop a new method and also to validate the developed method for the determination of Assay and Content Uniformity of Levonorgestrel by reverse-phase high performance liquid chromatography (RP-HPLC). Methods: RP-HPLC method was developed for simultaneous estimation of levonorgestrel using Hypersil ODS, 125 mm×4.6 mm×5 μm C8 column with a mixture of water, and acetonitrile solution with a ratio of 50:50 as a mobile phase at a flow rate of 1.3 mL/min with a detection of quantification wavelength of 242 nm. Method was selected after calculating system suitability and validated as per International Conference on Harmonization (ICH) guidelines. Results: The developed analytical method parameters found within the limits as given in ICH and USP Guidelines and the total chromatographic analysis time per sample was 8 min with Levonorgestrel Eluting with retention time of 4.479, 4.479, and 4.467 min, respectively. The validated HPLC method was successfully applied for the determination of dissolution of levonorgestrel tablets. Conclusion: The method is simple, precise, specific, and accurate. The newly developed method can be used for routine analysis of Levonorgestrel in tablet dosage form.

Author(s):  
Navya Sree K S ◽  
Swapnil J Dengale ◽  
Srinivas Mutalik ◽  
Krishnamurthy Bhat

Abstract Background Dronedarone HCl is an anti-arrhythmic drug indicated for atrial fibrillation. Dronedarone HCl(DRN) has a low solubility of 2 µg/mL and 4% bioavailability, thus it is formulated as co-amorphous system to enhance its solubility by using Quercetin(QCT) as coformer. Literature lacks a sensitive, accurate and economic method for simultaneous quantification of DRN and QCT in formulation. Objective To develop a RP-HPLC method for simultaneous estimation of DRN and QCT in DRN-QCT co-amorphous system. Method Co-amorphous system was prepared using solvent evaporation technique using DRN and QCT in 1:1 molar ratio. The separation was achieved on Purospher® STAR C18 (250 mm × 4.6 mm × 5 μm) column with mobile phase comprising of Acetonitrile and 25 mM phosphate buffer pH 3.6 (60:40, % v/v). Results DRN and QCT retained at 6.7 and 3.5 min, respectively. For both molecules, method was developed with a wide linearity range of 0.2–500 µg/mL. LOD for DRN was found to be 0.0013 and 0.0026 µg/mL for QCT. Also, LOQ for DRN was found to be 0.0041 and 0.0078 µg/mL for QCT. Conclusion Method was validated as per ICHQ2R1 guidelines for linearity, precision, accuracy, and robustness. The method was used in simultaneous quantification of DRN and QCT in co-amorphous samples. Highlights The method developed was used for the analysis of content uniformity and solubility samples of co-amorphous system, where the method was able to successfully quantify DRN and QCT. Low detection and quantification limits contribute to sensitivity of the method and wide linearity range assures the robust and precise quantification of molecules.


2020 ◽  
Vol 10 (1) ◽  
pp. 76-86 ◽  
Author(s):  
Santosh A. Kumbhar ◽  
Chandrakant R. Kokare ◽  
Birendra Shrivastava ◽  
Hira Choudhury

Background: It has been hypothesized that delivery of aripiprazole through nanoemulsion formulation would better deliver the drug into the central nervous system to treat major depressive conditions in psychological patients. Due course of formulation development, to determine solubility of the drug in different matrices and nanoemulsion is an important step. Materials & Methods: Therefore, a simple, rapid and selective reversed phase high performance liquid chromatographic (RP-HPLC) method was developed and validated for the determination of aripiprazole as per International Conference of Harmonization (ICH) guidelines. Satisfactory analysis method was employed for the quantitative determination of aripiprazole during pre-formulation development. Results and Discussion: The separation technique was achieved using the mobile phases of methanol-acetonitrile, 80:20 (v/v) delivered at 1.0 mL.min-1 flow rate through HIQ SIL C18 250x4.6 mm (5 μm particle size) column and detected at 218 nm wavelength. The method depicted linear calibration plots within the range of 5 to 50 µg.mL-1 with a determination coefficient (r2) of 0.9991 calculated by least square regression method. The validated method was sensitive with LOD of 10.0 ng.mL-1 and 30.0 ng.mL-1 of LOQ. The intra-day and inter-day precision values were ranged between 0.37-0.89 and 0.63-1.11 respectively, with accuracy ranging from 98.24 to 100.88 and 97.03 to 100.88, respectively. This developed and validated method was found to be sensitive for the determination of aripiprazole for the first time from various oils, surfactants, co-surfactants, and nanoemulsion formulation. Conclusion: This RP-HPLC method was successfully implemented for the quantitative determination of aripiprazole at developmental stages of nanoemulsion formulation.


Author(s):  
Bijithra Cholaraja ◽  
Shanmugasundaram P ◽  
Ragan G ◽  
Sankar Ask ◽  
Sumithra M

ABSTRACTObjective: To development and validation of a reversed-phase high-performance liquid chromatography (RP-HPLC) for the determination of modafinilin bulk and pharmaceutical dosage forms.Methods: A simple, precise, rapid, and accurate RP-HPLC method was developed for the estimation of modafinil in bulk and pharmaceutical dosageforms. Xterra RP 18 (250 mm × 4.6 mm, 5 µ particle size) with a mobile phase consisting of methanol:water 70:30 V/V was used. The flow rate1.0 ml/min and the effluents were monitored at 260 nm. The retention time and recovery time was 12 minutes. The detector response was linear inthe concentration of 10-50 µg/ml. The respective linear regression equation being Y=452.1x+65237. The limit of detection and limit of quantificationwere 4.547 and 1.377 mcg, respectively. The method was validated by determining its accuracy, precision, and system suitability.Result: The objective of the present work is to develop simple, precise, and reliable HPLC method for the analysis of modafinil in bulk andpharmaceutical dosage forms. This is achieved using the most commonly employed Xterra RP 18 (250 mm × 4.6 mm, 5 μ particle size) columndetection at 260 nm. The present method was validated according to ICH guidelines.Conclusion: In this study, a simple, fast and reliable HPLC method was developed and validated for the determination of modafinil in pharmaceuticalformulations.Keywords: Modafinil, Reversed-phase high-performance liquid chromatography, Estimation, ICH guidelines, Tablets. 


Author(s):  
D. Chinababu

Aim: The objective of the study was simplest, accurate, precise and robust reversed phase high performance liquid chromatographic (RP-HPLC) method was developed for the estimation of Velpatasvir (VEL) and Sofosbuvir (SOF) in the bulk and its tablet dosage form. Study Design: The Quantitative and Qualitative estimation and designed forced degradation study of Velpatasvir & Sofosbuvir by RP-HPLC. Place and Duration of Study: The study was carried at Santhiram College of Pharmacy and time taken 4 months. Method: The method was attained by used Waters( 5µm, C18 250 x 4.6 mm) column with mobile phase consists of  0.5 mM disodium hydrogen phosphate buffer pH adjusted to 6.5, with Orthophosphoric acid and Methanol in the ratio of 78:22 v/v, a flow rate of 1.0 mL/min and ultraviolet detection at 285 nm. Results: The method was validated as per ICH guidelines with different parameters, the mean retention times of VEL and SOF were found to be 2.8 & 4.7 min respectively. The resolution between VEL and SOF was found to be 10.66. The Correlation coefficients for calibration curves within the detection range of 32.5 - 97.5 and 125 - 375 µg/mL were 0.999 for VEL and SOF respectively. The LOD and LOQ for VEL and SOF were found to be 0.0068-0.029 µg/mL and 0.104-0.342 µg/mL respectively. Conclusion: The results were indicated that the developed method was used for the routine analysis of VEL & SOF combined form in bulk and its commercial formulation. To the best of our knowledge, there was no method of RP-HPLC for the determination of VEL alone or in combination with SOF molecule.


Author(s):  
Manasi Kulkarni B ◽  
Anagha Joshi M

Objective: The objective is to study the development of a simple, rapid, specific, precise, and accurate reversed-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous estimation of serratiopeptidase (SER) and diclofenac (DC) sodium in bulk and tablet formulation.Methods: RP-HPLC method was developed for the simultaneous estimation of SER and DC sodium in tablet formulation. The separation was achieved by Kromasil C18 column (250 mm × 4.6 mm, 5 μm particle size) with phosphate buffer pH-7 and o-phosphoric acid:methanol:acetonitrile (5:4:1% v/v/v). Flow rate was maintained at 1 mL/min and UV detection was carried at 270 nm.Result: For RP-HPLC method, the retention time for SER and DC sodium was found to be 3.3833 min and 8.1667 min, respectively. The method was validated for accuracy, precision, and specificity. Linearity for SER and DC sodium was in the range of 5–50 μg/ml.Conclusion: The developed RP-HPLC method is simple, accurate, rapid, sensitive, precise, and economic. Hence, this method can be employed successfully for the estimation of SER and DC sodium in both bulk and tablet dosage forms.


Author(s):  
Manasi Kulkarni B ◽  
Anagha Joshi M

Objective: The objective is to study the development of a simple, rapid, specific, precise, and accurate reversed-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous estimation of serratiopeptidase (SER) and diclofenac (DC) sodium in bulk and tablet formulation.Methods: RP-HPLC method was developed for the simultaneous estimation of SER and DC sodium in tablet formulation. The separation was achieved by Kromasil C18 column (250 mm × 4.6 mm, 5 μm particle size) with phosphate buffer pH-7 and o-phosphoric acid:methanol:acetonitrile (5:4:1% v/v/v). Flow rate was maintained at 1 mL/min and UV detection was carried at 270 nm.Result: For RP-HPLC method, the retention time for SER and DC sodium was found to be 3.3833 min and 8.1667 min, respectively. The method was validated for accuracy, precision, and specificity. Linearity for SER and DC sodium was in the range of 5–50 μg/ml.Conclusion: The developed RP-HPLC method is simple, accurate, rapid, sensitive, precise, and economic. Hence, this method can be employed successfully for the estimation of SER and DC sodium in both bulk and tablet dosage forms.


Sign in / Sign up

Export Citation Format

Share Document