scholarly journals TASTE ABATEMENT AND CHARACTERIZATION OF DISPERSIBLE TABLETS OF ARTEMETHER PREPARED BY HOT MELT EXTRUSION

2017 ◽  
Vol 9 (6) ◽  
pp. 28
Author(s):  
Yogesh A. Sonar ◽  
Mrudula H. Bele ◽  
Nitin H. Sonar ◽  
Vishal S. Bagul ◽  
Prashik S. Shimpi

Objective: The aim of this study was to formulate and evaluate a taste-masked formulation using hot melt extrusion approach for artemether.Methods: Taste masking of artemether was done by preparing solid dispersion with coating polymer kollicoatsmartseal 30D using hot melt extrusion. The prepared solid dispersion was subjected to taste masking evaluation like sensory evaluation parameters against five levels set for taste evaluation using artemether as control standard along with in vitro release studies in simulated salivery fluid. After taste evaluation of solid dispersion was subjected to the formulation of dispersible tablets by direct compression method. The final taste masking evaluation of dispersible tablets of solid dispersion containing artemether were done by a sensory evaluation panel of nine members along with in vitro release study in simulated salivary and gastric fluid.Results: The percent drug content was found 35.09±0.06 % in solid dispersion. The drug excipients compatibility studies performed with the help of FTIR instrument and DSC that indicates there were no interactions between drug and polymers. Solid dispersions (1:1, 1:2, 1:3 drug polymer ratio) of artemether were evaluated by sensory evaluation panel from which 1:3 drug: polymer solid dispersion was found more palatable. Release rate study in simulated salivary fluid shown no release but shows release of drug in simulated gastric fluids which indicates that the drug was taste masked. The optimized batch of dispersible tablets (F1) were subjected for evaluation parameters like dispersion time (70±1.90), wetting time (63±1.86), etc. Dissolution studies of optimized formulation indicated that the polymer does not allow drug to release in simulated salivery pH 6.8 but shows immediate release in simulated gastric pH which also confirms taste masking efficiency of polymer. Final optimized F1 batch evaluated for taste masking evaluation by sensory evaluation panel using pure drug as control standard found to be palatable.Conclusion: It may be concluded that kollicoatsmartseal 30D could mask the taste of the drug in salivary pH and shows drug release at gastric pH which confirms its efficiency for taste masking.

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4982
Author(s):  
Wenjing Zhu ◽  
Wenling Fan ◽  
Xiaotong Zhang ◽  
Meiqi Gao

This study aimed to prepare a sustained-release solid dispersion of poorly water-soluble resveratrol (RES) with high melting point in a single hot melt extrusion step. A hydrophobic–hydrophilic polymeric blend (Eudragit RS and PEG6000) was used to control the release of RES. With the dispersive mixing and high shear forces of hot melt extrusion, the thermodynamic properties and dispersion of RES were changed to improve its solubility. The effects of the formulation were investigated through univariate analysis to optimize the preparation of the sustained-release solid dispersion. In vitro and in vivo studies were performed to evaluate the prepared RES/RS/PEG6000 sustained-release solid dispersion. The physical state of the solid dispersion was characterized using differential scanning calorimetry and X-ray diffraction. Surface properties of the dispersion were visualized using scanning electron microscopy, and the chemical interaction between RES and excipients was detected through Fourier-transform infrared spectroscopy. Results suggested that the optimized sustained-release solid dispersion was obtained when the mass ratio of RES-polymeric blend was 1:5, the ratio of PEG6000 was 35%, the barrel temperature was 170 °C, and the screw speed was 80 rpm. In vitro studies demonstrated that the solid dispersion showed a good sustained release effect. The cumulative release of RES reached 82.42% until 12 h and was fit by the Weibull model. In addition, the saturated solubility was 2.28 times higher than that of the bulk RES. In vitro studies demonstrated that the half-life increased from 3.78 to 7.09 h, and the bioavailability improved to 140.38%. The crystalline RES was transformed into the amorphous one, and RES was highly dispersed in the polymeric blend matrix.


2019 ◽  
Vol 16 (6) ◽  
pp. 538-547 ◽  
Author(s):  
Ting Wen ◽  
Boyi Niu ◽  
Qiaoli Wu ◽  
Yixian Zhou ◽  
Xin Pan ◽  
...  

Background: Fenofibrate (FNB) is an effective drug for the treatment of hypertriglyceridemia, hypercholesterolemia as well as mixed hyperlipidemia. However, due to its poor aqueous solubility, FNB has the problem of poor oral absorption followed by low bioavailability. Objective: The aim of this research was to construct FNB amorphous solid dispersion employing PVP VA64 as the carrier by hot-melt extrusion method, in order to improve the oral bioavailability. Additionally, the cell transport experiment was conducted to further investigate the mechanism of promoted osmotic absorption. Methods: The physical state of the obtained solid dispersion was characterized using SEM, DSC and XRD. Besides, in vitro Caco-2 cells were used to evaluate the cytotoxicity of the carrier and mimic gastrointestinal drug permeation. At last, in vitro dissolution test and in vivo bioavailability study were also carried out. Results: The prepared FNB solid dispersion was found to be an amorphous state after hot-melt extrusion process. In vitro cytotoxicity test on Caco-2 cells confirmed the excellent biocompatibility of the carrier PVP VA64. Besides, transwell cell transport assay and in vitro dissolution test revealed that FNB released from amorphous solid dispersion was equipped with an improved transmembrane transport and dissolution rate. Moreover, pharmacokinetic study in beagle dogs showed that comparing with commercial micronized product Lipanthyl®, the oral bioavailability of FNB solid dispersion was significantly enhanced (2.45 fold). Conclusion: In conclusion, PVP VA64 can be regarded as a promising polymer to enhance the bioavailability of poorly water-soluble drugs such as FNB processed by hot-melt extrusion. Besides, investigations on the mechanism of the enhanced penetration are expected to lay a foundation on the subsequent development of effective and practical solid dispersion.


2012 ◽  
Vol 80 (2) ◽  
pp. 433-442 ◽  
Author(s):  
Mohammed Maniruzzaman ◽  
Joshua S. Boateng ◽  
Marion Bonnefille ◽  
Attila Aranyos ◽  
John C. Mitchell ◽  
...  

2019 ◽  
Vol 40 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Catalina María Álvarez ◽  
Laura Restrepo-Uribe ◽  
Jorge Andrés López ◽  
Omar Augusto Estrada ◽  
María del Pilar Noriega

Abstract Besides its poor dissolution in polymers, the stability, and bitterness of (-)-epicatechin present challenges for additional developments. Polymer formulations rich in flavonoids or other antioxidants can be developed by hot melt extrusion (HME) for enhancement of stability, release, and taste masking. The formulations are extruded at a temperature substantially below the melting point of (-)-epicatechin to avoid its degradation. The corresponding compound consists of about 50% wt. of an active nutraceutical ingredient, in this case (-)-epicatechin, and food grade polymers (GRAS: generally recognized as safe). In order to identify possible chemical or physical changes in the formulations, they were characterized using various techniques, such as differential scanning calorimetry, thermogravimetric analysis, polarized optical microscopy, in vitro release profile, sensory analysis, high-performance liquid chromatography, and Fourier transform infrared spectroscopy. The crystallinity of (-)-epicatechin was reduced after melt extrusion, but its chemical structure remained unchanged. The main contribution of this research is to shed light on the preparation of polymeric formulations based on (-)-epicatechin using HME as an encapsulation technique to improve stability, release, and taste masking, which may be scaled up and commercially launched as nutraceutical products.


2018 ◽  
Vol 547 (1-2) ◽  
pp. 385-394 ◽  
Author(s):  
David Cheng Thiam Tan ◽  
Jeremy Jianming Ong ◽  
Rajeev Gokhale ◽  
Paul Wan Sia Heng

Sign in / Sign up

Export Citation Format

Share Document