scholarly journals A NOVEL NANOGEL FORMULATION OF FINASTERIDE FOR TOPICAL TREATMENT OF ANDROGENETIC ALOPECIA: DESIGN, CHARACTERIZATION AND IN VITRO EVALUATION

Author(s):  
DIVYA SANGANABHATLA ◽  
R. SHYAM SUNDER

Objective: The present paper describes the development and evaluation of a Novel Finasteride (FSD) nanogel topical delivery for the treatment of Androgenetic Alopecia. Nano-based topical formulation was chosen to enhance the solubility, permeability, biocompatibility of drug and to overcome the problems associated with the oral delivery of finasteride. Methods: Various trails batches were prepared by using probe sonication method. Based on stability studies and particle size, NP4 trail was optimized which exhibited a spherical shape with a mean diameter of 113.80±0.72, the polydispersity of 0.28±0.01, zeta potential of-25.2 mV, drug entrapment efficiency of 92.67±0.47 %, and drug loading of 6.15±0.02 %. Storage stability studies demonstrated that the particle size and entrapment efficiency were not changed during 3 mo both at 4 °C and room temperature. Finasteride (FSD) NLCs were characterized for particle size by scanning electron microscope (SEM), chemical state by X-Ray diffraction (XRD), physical stability by centrifugation and thermodynamic stability by Freeze-thaw method. These prepared nanoparticles were transformed into topical nanogel and further evaluated. Results: Among the different trails, C2 trail of NLC gel has shown excellent gelling capacity, clear appearance, good viscosity characteristics and was selected for further evaluation studies. Batches of topical nanogel were characterized through pH, homogeneity, spreadability, viscosity, drug content and in vitro drug release study. Based on pH (6.5-6.8), drug content (91.25±0.9%), spreadability (6.7 cm/sec), C2 batch was subjected to In vitro skin occlusivity study, in-vitro release study and In vitro heamolysis study. Conclusion: The percent cumulative drug release for Finasteride (FSD) gel was found to be 758.52±1.49 µg at 24 h which is quite higher than plain gel and Finasteride (FSD) gel showed maximum occlusiveness and excellent spreadability and found to be stable. In conclusion, prepared Finasteride (FSD) Nanogel could be used with promising potential for the treatment of Androgenetic Alopecia.

Author(s):  
Somasundaram I

Aims and Objectives: The present study is to formulate the nanosuspension containing a hydrophilic drug pramipexole dihydrochloride and hesperidin and to increase the drug entrapment efficiency.Methods: Hesperidin and pramipexole dihydrochloride loaded in chitosan nanosuspension is prepared by ionic gelation method using chitosan and tripolyphosphate. There was no incompatibility observed between the drug and polymer through Fourier transform infrared and differential scanning calorimetric. Various other parameters such as particle size, zeta potential, scanning electron microscope, drug content, drug entrapment efficiency, and in vitro release have been utilized for the characterization of nanoparticles.Results and Discussion: The average size of particle is 188 nm; zeta potential is 46.7 mV; drug content of 0.364±0.25 mg/ml; entrapment efficiency of 72.8% is obtained with HPN3 formulation. The PHC1 shows the highest drug release followed by PHC2 due to low concentration of polymer and PHC4 and PHC5 show less drug release due to high concentration of polymer. The in vitro release of PHC3 is 85.2%, initial the burst release is shown which is approximately 60% in 8 h; then, slow release later on drastic reduction in release rate is shown in 24 h. The in vivo study histopathological report confers the effective protective against rotenone induces Parkinson’s.Conclusion: PHC3 was chosen as the best formulation due to its reduced particle size and controlled release at optimum polymer concentration which may be used to treat Parkinson’s disease effectively..


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Bhavin K. Patel ◽  
Rajesh H. Parikh ◽  
Pooja S. Aboti

Objective. The main objective of the present investigation was to develop and optimize oral sustained release Chitosan nanoparticles (CNs) of rifampicin by design of experiment (DOE). Methodology. CNs were prepared by modified emulsion ionic gelation technique. Here, inclusion of hydrophobic drug moiety in the hydrophilic matrix of polymer is applied for rifampicin delivery using CN. The 23 full-factorial design was employed by selecting the independent variables such as Chitosan concentration (X1), concentration of tripolyphosphate (X2), and homogenization speed (X3) in order to achieve desired particle size with maximum percent entrapment efficiency and drug loading. The design was validated by checkpoint analysis, and formulation was optimized using the desirability function. Results. Particle size, drug entrapment efficiency, and drug loading for the optimized batch were found to be 221.9 nm, 44.17 ± 1.98% W/W, and 42.96 ± 2.91% W/W, respectively. In vitro release data of optimized formulation showed an initial burst followed by slow sustained drug release. Kinetic drug release from CNs was best fitted to Higuchi model. Conclusion. Design of Experiment is an important tool for obtaining desired characteristics of rifampicin loaded CNs. In vitro study suggests that oral sustained release CNs might be an effective drug delivery system for tuberculosis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Vaibhav Rajoriya ◽  
Varsha Kashaw ◽  
Sushil Kumar Kashaw

Objective: The current paper represents the development, optimization, and characterization of paclitaxel-loaded folate conjugated solid lipid nanoparticles (FA-SLNs). Methods: The ligand (FA-SLNs) conjugated and non-conjugated SLNs (PTX-SLNs) were prepared by hot homogenization method. Both of the formulations (FA-SLNs and PTX-SLNs) were optimized with various parameters i.e. drug loading, stirring time, stirring speed, particle size, and polydispersity index, and characterized. The in-vitro drug release study was performed in different pH environments by using the dialysis bag method. The surface morphology and particle size were determined through scanning electron micorscopy and Transmission Electron Microscopy respectively, The SLNs formulations were also evaluated for the stability study. Result: The particle size of PTX-SLNs and FA-SLNs was determined and found to be 190.1±1.9 and 231.3±2.3 nm respectively. The surface morphology of the SLNs indicates that the prepared formulations are round-shaped and show smooth surfaces. The TEM study indicated that particles were in the range of 100-300 nm. The entrapment efficiency and drug loading capacity of FA-SLNs were found to be 79.42±1.6% and 17.3±1.9%, respectively. In-vitro drug release study data, stated that the optimum drug release was found in an acidic environment at pH 4.0, that showed 94.21% drug release after 16 hours and it proves that optimized formulation FA-SLNs will gave the sustained and better release in tumor tissue that owing acidic environment because of the angiogenesis process. Conclusion: In this research paper, different formulation parameters, found to influence fabrication of drug into Solid lipid nanoparticles, were optimized for high entrapment efficiency and drug loading. The most important parameters were drug:lipid ratio, drug:polymer ratio and lipid: surfactant ratio. Higher in-vitro drug release was observed in pH 4 as compared to the pH 7.4. These result data concludes that FA-SLNs formulation was successfully prepared, optimized and characterized.


Author(s):  
Santosh Gada ◽  
ANANDKUMAR Y. ◽  
C. MALLIKARJUNA SETTY

Objective: The objective of the present study was to investigate the possibility of obtaining a controlled, relatively constant effective level of lamivudine microspheres. Methods: Lamivudine loaded sodium alginate (SA) and tamarind mucilage(TM) mucoadhesive microspheres were prepared by ionic gelation technique with three different proportions of SA and TM with different concentrations of CaCl2. The prepared microspheres were evaluated for drug loading, particle size distribution, surface morphology, FTIR, in vitro wash off, in vitro release and stability studies. Results: The microspheres were found to be free flowing having diameter ranging from 769.22 to 978.56 µm, drug encapsulation efficiency (DEE) was found to be 65.28 to 92.33%. Percent drug release after 12 h were ranging from 85±1.51 to 97±1.44. In vitro release profile of all formulations shows slow controlled release up to 12 h. In vitro wash off studies shown fairly good mucoadhesivity with 20% microspheres adhered after 6h. Stability studies showed that no significant change in particle size and maximum DEE in comparison to the formulation stored at room temperature. Results: The lamivudine loaded SA-TM mucoadhesive microspheres can be conveniently prepared which showed better result and it may be used full for controlling the drug release and improve the bioavailability.


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


Author(s):  
GEETHA V. S. ◽  
MALARKODI VELRAJ

Objective: To formulate, optimize and evaluate 5-fluorouracil loaded liquorice crude protein nanoparticles for sustained drug delivery using Box-Behnken design. Methods: 5-fluorouracil (5-FU) loaded liquorice crude protein (LCP) nanoparticles were prepared by desolvation method using ethanol-water (1:2 ratio), Tween-80 (2%v/v) as stabilizing agent and gluteraldehyde (8% v/v) as cross linking agent. The optimization of prepared nanoparticles was carried out using Box-Behnken design with 3 factors 2 levels and 3 responses. The independent variables were A)5-FU concentration B)LCP concentration and C) sonication time while the responses were R1) Drug entrapment efficiency R2) Drug loading efficiency and R3) Particle size. The correlation between factors and responses were studied through response surface plots and mathematical equations. The nanoparticles were evaluated for FTIR, physicochemical properties like particle size and zeta potential by Photon correlation spectroscopy (PCS) and surface morphology by TEM. The entrapment efficiency, drug loading efficiency and in vitro drug release studies in PBS pH 7.4 (24 h) were carried out. The observed values were found to be in close agreement with the predicted value obtained from the optimization process. Results: 5-fluorouracil loaded LCP nanoparticles were prepared by desolvation method, the optimization was carried out by Box-Behnken design and the final formulation was evaluated for particle size (301.1 nm), zeta-potential (-25.8mV), PDI(0.226), with entrapment efficiency (64.07%), drug loading efficiency (28.54%), in vitro drug release (65.2% in 24 h) respectively. The formulated nanoparticles show Higuchi model drug release kinetics with sustained drug delivery for 24 h in pH7.4 buffer. Conclusion: The results were proved to be the most valuable for the sustained delivery of 5-Fluorouracil using liquorice crude protein as carrier. 5-FU–LCP nanoparticles were prepared using Tween-80 as stabilizing agent and gluteraldehyde as cross-linking agent to possess ideal sustained drug release characteristics.


Author(s):  
DIVYA ◽  
INDERBIR SINGH ◽  
UPENDRA NAGAICH

Objective: The aim of this study is to develop and in vitro evaluation of prepared fluconazole nanogel for seborrheic dermatitis Methods: Fluconazole nanogel was formulated to act against seborrheic dermatitis. The fluconazole nanoparticles were prepared by a simplified evaporation method and evaluated for particle size, entrapment efficiency, and percent in vitro drug release. The nanogel was also characterized based on parameters like particle size, percent entrapment efficiency, shape surface morphology, rheological properties, in vitro release R² = 0.9046, and release kinetics. Results: The nanoparticle with a combination of Eudragit RS and Tween 80 showed the best result with particle size in the range of 119.0 nm to 149.5 nm, with a cumulative percent drug release of 95 % up to 18 h. The formulated nanogel with optimum concentration of HPMC authenticate with particle size 149.50±0.5 with maximum drug release (92.13±0.32) %. Conclusion: Different percentages of polymers (ethyl-cellulose, eudragit, and tween 80) are used as variable components in the formulation of nanogel. The optimized batch showed good physical properties (flow index, spreadability, and viscosity) along with rapid drug release. Therefore, it can be concluded that nanogel containing fluconazole has potential application in topical delivery.


2020 ◽  
Vol 17 ◽  
Author(s):  
Bhaskar Kurangi ◽  
Sunil Jalalpure ◽  
Satveer Jagwani

Aim: The aim of the study was to formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC) through topical application. Background: Resveratrol (RV) is a nutraceutical compound that has exciting pharmacological potential in different diseases including cancers. Many studies of resveratrol have been reported for anti-melanoma activity. Due to its low bioavailability, the activities of resveratrol are strongly limited. Hence, an approach with nanotechnology has been done to increase its activity through transdermal drug delivery. Objective: To formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC). To evaluate resveratrol-loaded cubosomal gel (RC-Gel) for its topical application. Methods: RC was formulated by homogenization technique and optimized using a 2-factor 3-level factorial design. Formulated RCs were characterized for particle size, zeta potential, and entrapment efficiency. Optimized RC was evaluated for in vitro release and stability study. Optimized RC was further formulated into cubosomal gel (RC-Gel) using carbopol and evaluated for drug permeation and deposition. Furthermore, developed RC-Gel was evaluated for its topical application using skin irritancy, toxicity, and in vivo local bioavailability studies. Results: The optimized RC indicated cubic-shaped structure with mean particle size, entrapment efficiency, and zeta potential were 113±2.36 nm, 85.07 ± 0.91%, and -27.40 ± 1.40 mV respectively. In vitro drug release of optimized RC demonstrated biphasic drug release with the diffusion-controlled release of resveratrol (RV) (87.20 ± 2.25%). The RC-Gel demonstrated better drug permeation and deposition in mice skin layers. The composition of RC-Gel has been proved non-irritant to the mice skin. In vivo local bioavailability study depicted the good potential of RC-Gel for skin localization. Conclusion: The RC nanoformulation proposes a promising drug delivery system for melanoma treatment simply through topical application.


Author(s):  
Anupriya Anand ◽  
Bharadhwaj Ramesh Iyer ◽  
Chandrasekar Ponnusamy ◽  
Rajesh Pandiyan ◽  
Abimanyu Sugumaran

Aim: The present research work discussed the preparation of lomustine loaded with chitosan nanoparticles (LNCp) by ionic gelation method with homogenization using the design on experiments by Box-Behnken design. Methods: The nanoparticles are evaluated by particle size, zeta potential, surface morphology, drug content, entrapment efficiency and in-vitro drug release. Results: The FT-IR results support that drug have no interaction with excipients, which are used in the preparation of nanoparticle. The particle size, drug content and encapsulation efficiency of the developed nanoparticles ranged from 190 to 255 nm, 80.88% to 94.02%, and 77.12 to 88.74%, respectively. The drug release rate is diffusion-controlled over 8 hours. The F-value for all of the responses shows that the models are significant. The p-value, less than 0.05 for all the responses reveals the significance of the models. Graphical optimisation is done by desirability plot and overlay plot, which contains optimal values of independent variables with the desirability of 1. Conclusion: In conclusion, the results suggested that the optimised lomustine loaded chitosan nanoparticles are useful for brain targeting hence hold the potential for further research and clinical application.


Author(s):  
Sushant Kumar ◽  
Satheesh Madhav N V ◽  
Anurag Verma ◽  
Kamla Pathak

The purpose of this research was to isolate the smart biopolymer from the fruit pulp of Fragaria × ananassa (garden strawberry). We isolated natural fruit pulp to evaluate the potentiality of biopolymer in delivery of nanosized lamotrigine as an antiepileptic drug. Lamotrigine was nanosized by screening its nano-size particle by UV method. The nanosized lamotrigine was used for preparation of bionanoparticles (LF1-LF8) by sonication method. The isolated biopolymer was characterized for DSC, FTIR, NMR, Mass and Zeta particle size analysis. The obtained results confirm its polymeric nature in different analysis. The prepared bionanoparticles showed the release of lamotrigine in sustained manner over 36 hours. The release kinetic study was done by using the BIT-SOFT 1.12 software and T50% and T80%, r2 were calculated. All the formulation showed more than 99.78% drug release. The In-vitro release study of different formulations showed the % drug release from 90.92% to 99.78%. The different formulations were evaluated for the In-vitro release study and release kinetic was studied. The formulation LF5 was found to be the best formulation having T50% of 17 hours and T80% of 29 hours with r2 value of 0.9925. The best formulation LF5 showed up to 90.925% drug release over 36 hours. According to the release kinetic study, the best-fit model was found to be Koresmayer-Peppas and the mechanism of drug release was found to be anomalous transport. The results obtained from different evaluations like percentage entrapment efficiency, particle size, release study, kinetic studies and stability study revealed that isolated biopolymer has good potentiality to form bionanoparticles and it can be safely used as an alternative to synthetic and semisynthetic polymers for the preparation of lamotrigine loaded stable bionanoparticles


Sign in / Sign up

Export Citation Format

Share Document