scholarly journals DESIGN, OPTIMIZATION, AND EVALUATION OF RAFT FORMING GASTRO RETENTIVE DRUG DELIVERY SYSTEM OF LAFUTIDINE USINGBOX–BEHNKEN DESIGN

Author(s):  
LANKALAPALLI SRINIVAS ◽  
SHANTI SAGAR

Objective: The current research was aimed to formulate and evaluate raft forming gastro retentive floating drug delivery systems of Lafutidine for improving gastric residence time and sustained drug release for an extended time. Methods: Using Box–Behnken experimental design 17 formulations of lafutidine GRDDS were designed and evaluated for various parameters like physical appearance, pH, In vitro gelling study, in vitro buoyancy study, measurement of viscosity, density measurement, gel strength, drug content, acid neutralization capacity, the profile of neutralization, in vitro dissolution, release kinetic and stability studies. Results: All the evaluations were performed and observed that the values were within range, and the buoyancy lag time ranged within 14.76 to 25.84 sec and the formulations remained buoyant for more than 8h with the gelling time of 12h, the drug content was ranging from 98.96 to 99.55 %, and in vitro release was 86.86 to 99.34% by the end of 12h. The release kinetics followed zero-order with Higuchi’s model that indicating that drug release was found to be followed by the matrix diffusion process. Conclusion: Out of all formulations F3 was the optimized formulation and it was further characterized for FTIR, DSC, and stability studies, which exposed that there were no interactions amongst drug and excipients and no major change in the formulation and found to be stable.

Author(s):  
Anusha M ◽  
S T Bhagawati ◽  
K Manjunath

Objective: The aim of the present study was design, develop and to evaluate a model of floating sustained release pellets formulations for Omeprazole by extrusion and spheronization technique. Methods: Omeprazole at different drug to polymer ratios were prepared by extrusion and spheronization technique and the release rate of the drug from the pellets was studied. Further, the in-vitro release studies of pellets were carried out in 0.1N HCL for 12 hours. Prepared pellets were subjected to characterization by different techniques such as loose bulk density, tapped bulk density, compressibility index and angle of repose. To optimize the formulation on the basis of acceptable pellet properties friability, drug content, moisture content, and loss on drying and in-vitro drug release tests were done. In addition, the compatibility studies were performed by using FTIR and DSC. Results: These above studies indicated that the drug release can be modulated by varying the concentration of the polymer. The resulting formulation produced robust pellets with acceptable drug content and low friability. Further, release data was fitted to various mathematical models such as, Higuchi, Korsmeyer-Peppas, First-order, and Zero-order to evaluate the kinetics and mechanism of the drug release. Kinetic modeling of in-vitro dissolution profiles revealed the release mechanism ranges from Quasi-Fickian transport to Anomalous (non-Fickian transport), which was only dependent on the type and amount of polymer used. The drug release of the optimized formulation (F5) follows Zero order kinetics and the mechanism was found to be diffusion controlled. The FTIR and DSC studies reveal that there is no interaction between the drug and the polymer/excipients mixture. Keywords:  Floating, Ethyl cellulose, HPMC, Pellets, Omeprazole.


Author(s):  
DIVYA SANGANABHATLA ◽  
R. SHYAM SUNDER

Objective: The present paper describes the development and evaluation of a Novel Finasteride (FSD) nanogel topical delivery for the treatment of Androgenetic Alopecia. Nano-based topical formulation was chosen to enhance the solubility, permeability, biocompatibility of drug and to overcome the problems associated with the oral delivery of finasteride. Methods: Various trails batches were prepared by using probe sonication method. Based on stability studies and particle size, NP4 trail was optimized which exhibited a spherical shape with a mean diameter of 113.80±0.72, the polydispersity of 0.28±0.01, zeta potential of-25.2 mV, drug entrapment efficiency of 92.67±0.47 %, and drug loading of 6.15±0.02 %. Storage stability studies demonstrated that the particle size and entrapment efficiency were not changed during 3 mo both at 4 °C and room temperature. Finasteride (FSD) NLCs were characterized for particle size by scanning electron microscope (SEM), chemical state by X-Ray diffraction (XRD), physical stability by centrifugation and thermodynamic stability by Freeze-thaw method. These prepared nanoparticles were transformed into topical nanogel and further evaluated. Results: Among the different trails, C2 trail of NLC gel has shown excellent gelling capacity, clear appearance, good viscosity characteristics and was selected for further evaluation studies. Batches of topical nanogel were characterized through pH, homogeneity, spreadability, viscosity, drug content and in vitro drug release study. Based on pH (6.5-6.8), drug content (91.25±0.9%), spreadability (6.7 cm/sec), C2 batch was subjected to In vitro skin occlusivity study, in-vitro release study and In vitro heamolysis study. Conclusion: The percent cumulative drug release for Finasteride (FSD) gel was found to be 758.52±1.49 µg at 24 h which is quite higher than plain gel and Finasteride (FSD) gel showed maximum occlusiveness and excellent spreadability and found to be stable. In conclusion, prepared Finasteride (FSD) Nanogel could be used with promising potential for the treatment of Androgenetic Alopecia.


Author(s):  
Monica RP Rao ◽  
Pooja B. Karanjkar

Efavirenz, a non-nucleotide reverse transcriptase inhibitor is an important drug for treating patients with Human Immunodeficiency Virus infections. It belongs to BCS class II have low solubility and poor intrinsic dissolution rate. It is highly basic (pKa 10.2) which makes it suitable candidate for floating dosage form for continuous delivery in stomach.The study was aimed to improve the solubility by solid dispersion technique.Saturation solubility study and drug content were evaluated for solid dispersion preparation. Saturation solubility shows 8 fold increases in 0.1 N HCL compared to plain drug and drug content was found to be between 95%-102%. Further effervescent floating gastroretentive drug delivery system was prepared by 32 full factorial design with independent variables i.e., concentration of HPMC K100 as matrix forming agent and citric acid as gas generating agent. Lag time, floating time, percent drug release were studied as responses. The optimized batch exhibited floating lag time of 40 sec and the in vitro release studies showed 89.5% drug release in 9 h and tablet remained floating for greater than 8 h. The study thus demonstrated that solubility is increased by solid dispersion technique and floating delivery systems may increase solubility and bioavailability of Efavirenz.


Author(s):  
FIROZ S ◽  
PADMINI K ◽  
PADMASREE K ◽  
SRAVANI N ◽  
HEMALATHA A ◽  
...  

Objectives: The present study describes the preparation and evaluation of a Poloxamer 188 (P188)-based thermoreversible gel using Carbopol 934P (C934P) as a mucoadhesive polymer of pseudoephedrine for enhancing the bioavailability and to avoid the first-pass metabolism. Materials and Methods: Five formulations (F1-F5) were prepared using cold method. The prepared gels were characterized by pH, drug content, spreadability, mucoadhesive force, gelation temperature, and drug release profile. Thermoreversibility of P188/C934P gel was demonstrated by rheological studies. The drug-polymer compatibility was studied using Fourier transform infrared (FTIR). Results: The incorporation of carbopol into P188 gel also reduced the amounts of drug released from the gel formulations. FT-IR studies revealed that there are no interactions between the drug and polymers. Drug content of gels was estimated and the results were found to be satisfactory. In vitro dissolution studies revealed a good drug release from the gels. The drug release was higher in formulations F4 and F5 and lower in F1, F2, and F3 formulations. The order of drug release was found to be F5>F4>F3>F2>F1. Conclusion: These findings suggested that developed thermoreversible gels could be used as promising dosage forms to rectal drug delivery for prolonged periods in the management of hemorrhoids.


Author(s):  
SRIKANTH REDDY S ◽  
SURESH G

Objective: The present work is aimed at developing liquid self-nanoemulsifying drug delivery system (liquid-SNEDDS) of manidipine. Methods: The manidipine SNEDDS is formulated with excipients comprising Capmul MCM as oil phase, Transcutol P as surfactant, and Lutrol L 300 as cosurfactant. The prepared fifteen formulations of manidipine SNEDDS were performed for emulsification time, percentage transmittance, particle size, drug release, in vitro dissolution and stability studies. Ternary phase diagram plotted using Chemix software. Results: The optimized manidipine liquid SNEDDS formulation (F14) subjected to drug-excipient compatibility studies by Fourier-transform infrared spectroscopy and characterized for particle size, zeta potential, scanning electron microscopy, and stability studies. The morphology of manidipine SNEDDS indicates spherical shape with uniform particle distribution. The percentage drug release from optimized formulation F14 (98.24±5.14%) was higher than that of pure drug (39.17±2.98%). The stability data indicated no noticeable change in drug content, emulsifying properties, drug release, and appearance. Conclusion: Hence, a potential SNEDDS formulation of manidipine developed with enhanced solubility, dissolution rate, and bioavailability.


INDIAN DRUGS ◽  
2021 ◽  
Vol 57 (12) ◽  
pp. 65-69
Author(s):  
Himanshu Mishra ◽  
Lokesh Adhikari ◽  
Mona Semalty ◽  
Ajay Semalty ◽  

In this study, floating microspheres of metformin hydrochloride were prepared by using cellulose acetate polymer by solvent evaporation method. Four formulations were prepared by varying the ratio of drug and polymer. The prepared microspheres were then subjected to various evaluation parameters such as drug content, micromeritic evaluations, FTIR, SEM, floatability and in vitro dissolution study. Formulation F1 (1:1 ratio of polymer and drug) showed the highest drug release and drug content with good flow properties. The cumulative percentage of drug release significantly decreased with decreasing drug concentration with a constant polymer ratio. Scanning Electron Microscopy images of all formulations showed that the prepared floating microspheres were irregular in shape, and the surface was found to be non- uniform and rough. In vitro release studies indicated the mechanism of the drug release to follow the Korsemeyer-Peppas model, and “n” value was found to be between 0.54-1.89, indicating anomalous transport mechanism.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (01) ◽  
pp. 34-40
Author(s):  
V.L Narasaiah ◽  
◽  
Ch. Praneetha ◽  
P Mallika ◽  
K. Pullamma ◽  
...  

The aim of this project was to develop fast dissolving tablets (FDT) of aceclofenac by wet granulation using super disintegrating agents such as cross carmellose sodium (CCS), Crospovidone (CP) and sodium starch glycolate (SSG) were formulated and evaluated. The tablets evaluated for thickness, hardness, friability weight variation, drug content, water absorption ratio, wetting time, disintegration time and in vitro dissolution studies. The in vitro release studies were conducted in pH 7.4 phosphate buffer. Different release models like zero order, first order, Higuchi and Korsmeyer-Peppas were applied to in vitro drug release data in order to evaluate drug release mechanisms and kinetics. The formulation ‘F4’ showed satisfactory physico-chemical properties and drug content uniformity. The formulation ‘F4’ follows first order kinetics and the mechanism of drug release was governed by Higuchi. The ‘n’ value showed between <0.5, it was followed that Fickian transport. The FTIR studies were conducted and it shows that there is no interaction between drug and excipients.


2019 ◽  
Vol 9 (4-A) ◽  
pp. 358-366
Author(s):  
Nilesh V. Pakhale ◽  
S.B. Gondkar ◽  
R.B. Saudagar

The objective of the present study was to formulate and evaluate Effervescent Floating Tablet of Fluoxetine for the treatment of antidepressant agent. Tablets were prepared by direct compression using directly compressible polymers such as HPMC K4M, and Carbopol 934 were evaluated for drug-excipient compatibility, density, buoyancy test, swelling study, drug content and In-Vitro release profile. Sodium bicarbonate and citric acid were used producing effervescent base for buoyancy of tablets. Analysis of drug release from tablet indicates drug release by zero order, first order rate kinetics. No significant change was observed in physical appearance, drug content, floatability or in-vitro dissolution pattern after storage at 450C/750C RH for three months. Keywords: Floating effervescent tablet, GIT, Fluoxetine , HPMC K4M, Carbopol 934.                                                                                              


2019 ◽  
Vol 9 (1-s) ◽  
pp. 312-318
Author(s):  
Yerikala Ramesh ◽  
Abhilash Kaki Rohan ◽  
Balasaradhi Koorapati ◽  
P. Sudarsanam

Abstract: The aim of the present study was to formulate and evaluate Almotriptan pellets. Almotriptan controlled release pellets were prepared by Solution layering technique by using croscarmellose and povidone in former case and three different polymers HPMC K 100, Ethyl cellulose and Eudragit RS 100 as rate controlling polymer in three different ratios like 1:1, 1:1.5 and 1:2 to achieve desired release in later case. Evaluation was performed according to the Pharmacopoeia standards including Drug excipients compatibility, Percentage yield, Particle size distribution, Drug content analysis and in-vitro release study. The best results were found to be using Almotriptan and Eudragit RS 100 in 1:2 ratios. A broad variety of drug release pattern could be achieved by variation of polymers ratios which was optimized to match the target release profile. In comparison of in-vitro release studies for different controlled release formulations, F9 releases 98.54% of drug at the end of 12th hour and was considered as best formulation. Stability study has shown no significant change in the drug content analysis and in-vitro dissolution study of best formulation even after 6 months. Keywords: Almotriptan, Controlled release, Dissolution profile, in-vitro drug release, Stability studies.


2019 ◽  
Vol 9 (4-s) ◽  
pp. 445-450
Author(s):  
Bharti Patle ◽  
Vivek Jain ◽  
Shradha Shende ◽  
Prabhat Kumar Jain

Floating drug delivery systems are the gastroretentive forms that precisely control the release rate of target drug to a specific site which facilitate an enormous impact on health care. The purpose of this research was to develop a novel gastro retentive drug delivery system based on direct compression method for sustained delivery of active agent to improve the bioavailability, reduce the number of doses and to increase patient compliance. Gastro retentive floating tablets of Prochlorperazine dimaleate (PCZ) were prepared by direct compression method using altered concentrations of HPMC K4, HPMC K15 and PVP K30 as polymers. The prepared tablets of PCZ were evaluated for hardness, thickness, friability, weight variation, drug content uniformity, buoyancy lag time, total floating time, in-vitro dissolution study, etc. All the compositions were resulted in adequate Pharmacopoeial limits. Compatibility studies was execution during FTIR shown that there was absence of probable chemical interaction between pure drug and excipients. The varying concentration of gas generating agent and polymers was found to affect on in-vitro drug release and floating lag time. In vitro drug release of floating gastro retentive tablet of PCZ shown that the formulation F9 was found to be the best formulation as it releases 98.89% in a controlled manner for an extended period of time (up to 12 hrs). The release data was fitted to various mathematical models such as Higuchi, Korsmeyer-Peppas, First order and Zero order to evaluate the kinetics and mechanism of the drug release. The optimized formulation (F9) showed no significant change in physical appearance, drug content, floating lag time, in vitro dissolution studies after 75%±5% RH at 40±20C relative humidity for 6 months.  Prepared floating tablets of PCZ may prove to be a potential candidate for safe and effective controlled drug delivery over an extended period of time for gastro retentive drug delivery system. Keywords: Prochlorperazine dimaleate, Floating tablet, Gastro retentive, Total floating time.


Sign in / Sign up

Export Citation Format

Share Document