scholarly journals Formulation and Development of Gastroretentive Drug Delivery System of Efavirenz

Author(s):  
Monica RP Rao ◽  
Pooja B. Karanjkar

Efavirenz, a non-nucleotide reverse transcriptase inhibitor is an important drug for treating patients with Human Immunodeficiency Virus infections. It belongs to BCS class II have low solubility and poor intrinsic dissolution rate. It is highly basic (pKa 10.2) which makes it suitable candidate for floating dosage form for continuous delivery in stomach.The study was aimed to improve the solubility by solid dispersion technique.Saturation solubility study and drug content were evaluated for solid dispersion preparation. Saturation solubility shows 8 fold increases in 0.1 N HCL compared to plain drug and drug content was found to be between 95%-102%. Further effervescent floating gastroretentive drug delivery system was prepared by 32 full factorial design with independent variables i.e., concentration of HPMC K100 as matrix forming agent and citric acid as gas generating agent. Lag time, floating time, percent drug release were studied as responses. The optimized batch exhibited floating lag time of 40 sec and the in vitro release studies showed 89.5% drug release in 9 h and tablet remained floating for greater than 8 h. The study thus demonstrated that solubility is increased by solid dispersion technique and floating delivery systems may increase solubility and bioavailability of Efavirenz.

2012 ◽  
Vol 600 ◽  
pp. 137-143
Author(s):  
Jing Hui ◽  
Xiao Jie Yu ◽  
Yue Zhang ◽  
Feng Qing Hu

Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) is one of the components of polyhydroxyalkanoates (PHAs) and some of its mechanical properties have been shown to improve over poly (3-hydroxybutyrate) (PHB) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The investigation of PHBHHx microspheres as a drug delivery system was prepared by emulsion-solvent evaporation method for the sustained release of anti-cancer drug 5-fluorouracil (5-FU) and cyclosporin A (CsA). The mean diameter of the PHBHHx microspheres ranged from 5.24 to 22.10 μm dependent on the different processing parameters. The PHBHHx concentration, emulsifier concentration, anti-cancer drug dosage, and agitation speed, were optimized according to the encapsulation efficiency of 4% PHBHHx, 0.5% SDS, 10 mg anti-cancer drug, and 500 rpm. Under optimized conditions, the encapsulation efficiency of 5-FU and CsA microspheres were 7.19% and 96.44%, respectively. The morphologies of scanning electron microscope (SEM) suggested that PHBHHx microspheres were relatively smooth that provided better dispersion compared to PHB microspheres. The in vitro release profiles indicated 32.42% of 5-FU and 30.61% of CsA were released from PHBHHx microspheres during the initial burst phase, and the drug release from PHBHHx microsphere could be detected even after one month. The characteristics of PHBHHx microspheres demonstrated the feasibility of PHBHHx microsphere as a novel matrix for drug release system. With positive maintenance of the therapeutic concentrations of the drug, side effects can be reduced and patient compliance can be improved.


Author(s):  
M. S. Neeharika ◽  
B. Jeevana Jyothi

The objective of the present study was to formulate and evaluate an oral, time-controlled drug delivery system of Zafirlukast. Zafirlukast belongs to BCS class II drugs as it has poor aqueous solubility and good permeability. Hence an attempt has been made to improve its aqueous solubility by solid dispersion technique so that its dissolution, bioavailability, and therapeutic effect can be optimized. The optimized solid dispersion was then formulated into a chronotherapeutic drug delivery system by compression coating technology. FT-IR study revealed that there was no chemical interaction between the drug and polymers used. Tablets were prepared by direct compression method using different super disintegrants and then followed by compression coating using natural polymers. Pre-compression and post-compression parameters complied with the Pharmacopoeia limit for the tablets. In vitro release studies were performed and the results indicated the formulation Z9F9 to be the optimized formulation.


Author(s):  
Yogesh Singh ◽  
Anjana Bhardwaj

Topical drug administration is a localized drug delivery system anywhere in the body through ophthalmic, rectal, vaginal and skin as topical routes. Skin is one of the most readily accessible organs on human body for topical administration and is main route of topical drug delivery system. There are various skin infections caused by fungus. An antifungal medication is a pharmaceutical fungicide used to treat mycoses such as athlete’s foot ringworm, candidiasis. Antifungal works by exploiting differences between mammalian and fungal cells to kill the fungal organism without dangerous effect on host. Itraconazole (ITZ) is commonly used in the treatment of fungal infections. It has low bioavailability (55%) because of low aqueous solubility and first pass effect. Hence we attempted to develop Itraconazole-loaded invasomes hydrogel. ITZ-loaded invasomes were prepared by conventional thin layer evaporation technique using Phospholipon 90H, terpene (Limonene) and ethanol. The optimized ITZ-loaded invasomes was incorporated into carbopol 934p (0.5 to 2%) solution to get a hydrogel for improving convenience in superficial application. FT-IR studies revealed no interaction between the drug and excipients. The formulated hydrogel formulation was evaluated with parameter pH, viscosity, gel strength, drug content, spread ability, in-vitro release test, wash ability, extrudability study and stability studies. The formulation OIGF4 showed a drug content of 99.12% and drug release of 99.78% in 72 hrs, which contains carbopol 934p concentration 2%w/w. The present work also focuses on making the formulation more pharmaceutically acceptable.


Author(s):  
Chiranjibi Adhikari ◽  
Gururaj S Kulkarni ◽  
Shivakumar Swamy

Objective: The main objective of the present study was to design and evaluate a time-controlled single unit oral pulsatile drug delivery system containing salbutamol sulfate for the prevention of nocturnal asthma attacks.Methods: Drug containing core tablets (C1-C10) with different composition of superdisintegrants such as sodium starch glycolate, croscarmellose sodium, and crospovidone were prepared by direct compression technique. The fast disintegrating core tablet formulation was selected, and press-coated tablets (P1-P11) were prepared with different compositions of hydrophobic and hydrophilic polymers: Ethylcellulose-20 (EC-20), hydroxypropyl methylcellulose K4M, and low substituted hydroxypropyl cellulose (L-HPC LH11). The coating polymers were selected and quantified based on in vitro lag time and drug release profile in simulated gastric and intestinal fluids.Results: Formulation C10 with 7.5% crospovidone showed least disintegrating time, i.e., 0.31 min and was selected as the best immediate release core tablet. The press-coated tablet formulation P11 having 360 mg barrier layer of EC-20 and L-HPC LH11 in ratio 14:1 over the core tablet C10 showed rapid and complete drug release nearly after 6 h lag time. Accelerated stability studies of the optimized formulation P11 indicated no significant difference in release profile after a period of 6 months.Conclusion: The in vitro dissolution study showed that lag time before drug release was highly affected by the coating level and nature of coating polymer used. Time-controlled pulsatile release tablets can be prepared using press-coating techniques.


2016 ◽  
Vol 14 (2) ◽  
pp. 163-170
Author(s):  
Md Asif Hasan ◽  
Sabiha Sultana ◽  
Sabiha Sultana ◽  
Md Masud Kaisar Bhuiyan ◽  
Md Selim Reza ◽  
...  

The purpose of the study was to develop and optimize floating bioadhesive gastroretentive drug delivery system (GRDDS) exhibiting a unique combination of floatation and bioadhesion to prolong residence in the stomach, using hydrochlorothiazide (HCTZ) as a model drug. Formulated matrix tablets were prepared by direct compression method with two different rate controlling polymer HPMC K4M and Carbopol 971. The formulated tablets were evaluated for physical characterization, floating lag time, swelling index and drug content uniformity. The drug release study was carried out in 0.1N HCl as the medium (pH 1.2) for 8 hours using USP type II dissolution apparatus and investigated the effects of polymers on the drug release profile. In vitro buoyancy study results found to be 10–33 sec and >8 h, floating lag time and total floating time respectively. Simulated drug release pattern in different kinetic models of Korsmeyer-Peppas release suggests that the mechanism controlling of the drug release from all formulations was the anomalous non-Fickian or anomalous release. Polymer with lower viscosity (HMPC K4M) was found to be beneficial than higher viscosity polymer (Carbopol 971) in improving the release properties of gastric floating drug delivery system. Incorporation of Carbopol in formulation also helped in maintaining buoyancy of system with desirable drug release. Further study is necessary in case of in vitro- in vivo relationship, but this study will ready to lend a hand to future scientists working in this field to successfully exploit the potential of this drug delivery system for the advantage of mankind.Dhaka Univ. J. Pharm. Sci. 14(2): 163-170, 2015 (December)


2018 ◽  
Vol 8 (5) ◽  
pp. 393-399
Author(s):  
Ramdas T. Dolas ◽  
Shalindra Sharma ◽  
Madhuraj Sharma

The purpose of this research was to develop a novel gastroretentive drug delivery system based on wet granulation technique for sustained delivery of active agent. Quick GI transit could result in incomplete drug release from the drug delivery system above the absorption zone leading to decreased efficacy of the administered dose and thus less patient compliance. Gastroretentive floating tablets, which was designed to provide the desired sustained and complete release of drug for prolonged period of time. Gastroretentive floating tablets of lafutidine were prepared by wet granulation technique using different concentrations of Gum Kondagagu, Gum olibanum and Locust bean Gum. The optimized formulation (LF14) exhibited 99.54% drug release in 12 hrs, while the buoyancy lag time was 33 sec. In-vitro drug release kinetics was found to follow both the Zero order and the possible mechanism of lafutidine release from the optimized formulation might be attributed to super case II transport mechanism. The Optimized formulation (LF14) showed no significant change in physical appearance, drug content, floating lag time, in vitro dissolution studies after 75%±5% RH at 40±20C relative humidity for 6 months. Keyword: Wet granulation, Floating lag Time, Gastroretentive, Lafutidine


Author(s):  
Sindhu Vemula ◽  
Bhavya S ◽  
Suresh Kumar P ◽  
Jeyabaskaran M ◽  
Praveenkumar T ◽  
...  

  Objective: The present research study was carried out to formulate and evaluate the implants of temozolomide using hydrophilic polymer.Methods: Temozolomide implants were formulated using extrusion method with different grades of carbopol. The powdered blend was evaluated for micromeritic properties such as angle of repose, bulk density, tapped density, Carr’s index, and Hausner’s ratio. The formulated implants were analyzed for drug content uniformity, thickness, weight variation, and short-term stability study. In vitro release study of implants was performed using 0.1N hydrochloric acid, and it is maintained at 37°C±0.5°C.Results: In vitro release study demonstrated that the release rate of temozolomide from the implant matrix was a function of concentration of the polymer. As the concentration of polymer was increased, drug release from the matrix was extended. The release of drug from all implant formulations was found to be uniform and was extended over a period of 12 hrs. The implant formulations were found sterile, uniform in weight and size. The drug content was found to be in the range of 97.2-101.33%.Conclusion: Drug interaction studies revealed that there were no chemical interactions between temozolomide and polymers used in the study. Short-term stability studies of implants revealed that implants were stable, and there were no significant changes in the physical appearance and drug content of the implant formulations. The results of the study demonstrated that implantable drug delivery system of temozolomide can be formulated using hydrophilic polymer.


Author(s):  
Kumari P.V. Kamala ◽  
Mounica V. ◽  
Rao Y. Srinivasa

Pulsatile drug delivery system is one type of drug delivery system, where the delivery device is capable of releasing drugs after a predetermined time-delay (i.e. lag time). This system has a peculiar mechanism of delivering the drug rapidly and completely after a "lag time," i.e., a period of "no drug release." These systems are beneficial for drugs having high first-pass effect drugs administered for diseases that follow chrono pharmacological behavior such as drugs having specific absorption sites in GIT, targeting to colon; and cases where nighttime dosing is required. The objective of the present study was to formulate and evaluate a press coated pulsatile drug delivery system of simvastatin in order to attain a time controlled release to lower the blood cholesterol level by releasing the drug with a distinct predetermined lag time of five hrs. Simvastatin is a water insoluble drug and its absorption is dissolution rate limited. The core formulations were composed of simvastatin and disintegrants like lycoat, SSG, ludiflash in different ratios and was coated with xanthan gum, guar gum, HPMC K4M, HPMC K15M as a release modifier. Press coated tablets were evaluated for hardness, friability, drug content, and in vitro drug release. Result of in vitro dissolution study of the prepared tablet suggested that, the release of drug from press coated tablets match with chrono-biological requirement of disease.


Author(s):  
ShirishaG. Suddala ◽  
S. K. Sahoo ◽  
M. R. Yamsani

Objective: The objective of this research work was to develop and evaluate the floating– pulsatile drug delivery system (FPDDS) of meloxicam intended for Chrono pharmacotherapy of rheumatoid arthritis. Methods: The system consisting of drug containing core, coated with hydrophilic erodible polymer, which is responsible for a lag phase for pulsatile release, top cover buoyant layer was prepared with HPMC K4M and sodium bicarbonate, provides buoyancy to increase retention of the oral dosage form in the stomach. Meloxicam is a COX-2 inhibitor used to treat joint diseases such as osteoarthritis and rheumatoid arthritis. For rheumatoid arthritis Chrono pharmacotherapy has been recommended to ensure that the highest blood levels of the drug coincide with peak pain and stiffness. Result and discussion: The prepared tablets were characterized and found to exhibit satisfactory physico-chemical characteristics. Hence, the main objective of present work is to formulate FPDDS of meloxicam in order to achieve drug release after pre-determined lag phase. Developed formulations were evaluated for in vitro drug release studies, water uptake and erosion studies, floating behaviour and in vivo radiology studies. Results showed that a certain lag time before drug release which was due to the erosion of the hydrophilic erodible polymer. The lag time clearly depends on the type and amount of hydrophilic polymer which was applied on the inner cores. Floating time and floating lag time was controlled by quantity and composition of buoyant layer. In vivo radiology studies point out the capability of the system of longer residence time of the tablets in the gastric region and releasing the drug after a programmed lag time. Conclusion: The optimized formulation of the developed system provided a lag phase while showing the gastroretension followed by pulsatile drug release that would be beneficial for chronotherapy of rheumatoid arthritis and osteoarthritis.


Sign in / Sign up

Export Citation Format

Share Document