scholarly journals DEVELOPMENT OF SPECTROPHOTOMETRIC AND FLUOROMETRIC METHODS FOR ESTIMATION OF DARUNAVIR USING QBD APPROACH

Author(s):  
R. D. Godambe ◽  
J. I. Disouza ◽  
C. M. Jamkhandi ◽  
P. S. Kumbhar

Objective: The main objective of the present study is to develop newer simple, precise spectrophotometric and fluorometric methods of estimation for Darunavir using coupling agent O-pthaladehyde.Methods: The experimental work was designed for both spectroscopic and fluorometric method development and validation. The method is based on formation complex of Darunavir with O-pthaladehyde. QbD approach was applied by varying different parameters. These parameters were designed into Ishikawa diagram.Results: The complex Darunavir-Phthalaldehyde in methanol with 0.1 N HCl showed linearity for both spectrophotometric and fluorometric methods. The calibration curve by spectrophotometry is linear in concentration range of 2-22 µg/ml with regression coefficient (R2) = 0.998 at 355 nm and for fluorometry it is linear in concentration range of 0.5-5.0 ng/ml with regression coefficient (R2) = 0.999. This method was found to be rugged and robust in different testing criteria with % RSD less than 2. The limit of detection and limit of quantification was found to be 0.2 μg/ml and 0.8 μg/ml for a spectrophotometric method and 0.12 μg/ml and 0.43 μg/ml for fluorometric method respectively.Conclusion: Both methods were found to be precise with % RSD of less than 2. The % recovery of the spectrophotometric and fluorometric methods was found to be 101.04 %, 98.15 % respectively. In this way, the results of all validation parameter were within the limits as per International Conference on Harmonization guideline. 

Drug Research ◽  
2020 ◽  
Vol 70 (09) ◽  
pp. 417-423
Author(s):  
Beena Kumari ◽  
Aparna Khansili

Abstract Background Vildagliptin is an antidiabetic agent, belongs to the dipeptidyl peptidase IV (DPP-4) inhibitors. Objective The aim of investigation was to develop a simple UV-visible Spectrophotometric method for the determination of vildagliptin in its pure form and pharmaceutical formulations, further to validate the developed method. Material and Methods Vildagliptin was estimated using UV-Visible double beam spectrophotometer at the wavelength of maximum absorption (210 nm) in acidic medium containing 0.1N HCl. The drug was characterized by melting point, Differential Scanning Calorimetry (DSC), and Fourier Transform Infra-Red (FTIR) techniques. The analysis of the drug was carried out by novel UV-Visible method which was validated analytical parameters like linearity, precision, and accuracy as per guidelines laid down by International Conference on Harmonization (ICH). Result Melting point of drug was found 154°C which is corresponds to its actual melting range. Similarly by the interpretation of spectra the drug was confirmed. The linear response for concentration range of 5–60 µg/ml of vildagliptin was recorded with regression coefficient 0.999. The accuracy was found between 98–101%. Precision for intraday and interday was found to be 1.263 and 1.162 respectively, which are within the limits. To establish the sensitivity of the method, limit of detection (LOD) and limit of quantification (LOQ) were determined which were found to be 0.951 µg/ml and 2.513 µg/ml respectively. Conclusion The UV method developed and validated for vildagliptin drug was found to be linear, accurate, precise and economical which can be used for the testing of its pharmaceutical formulations.


Author(s):  
Ayya Rajendra Prasad ◽  
Jayanthi Vijaya Ratna

 Objective: The objective of this study was developed and validated a novel, specific, precise, and simple ultraviolet (UV)-spectrophotometric method for the estimation of norfloxacin present in taste masked drug-resin complex.Methods: UV-spectrophotometric determination was performed with ELICO SL 1500 UV-visible spectrophotometer using 0.1 N HCl as a medium. The spectrum of the standard solution was run from 200 to 400 nm range for the determination of absorption maximum (λ max). λ max of norfloxacin was found at 278 nm. The absorbance of standard solutions of 1, 2, 3, 4, and 5 μg/ml of drug solution was measured at an absorption maximum at 278 nm against the blank. Then, a graph was plotted by taking concentration on X-axis and absorbance on Y-axis which gave a straight line. Validation parameters such as linearity and range, selectivity and specificity, limit of detection (LOD) and limit of quantification (LOQ), accuracy, precision, and robustness were evaluated as per the International Conference on Harmonization (ICH) guidelines.Results: Linearity for the UV-spectrophotometric method was noted over a concentration range of 1–5 μg/ml with a correlation coefficient of 0.9995. The LOD and LOQ for norfloxacin were found at 0.39 μg/ml and 1.19 μg/ml, respectively. Accuracy was in between 99.00% and 99.17%. % relative standard deviation for repeatability, intraday precision, and interday precision was found to be 0.600, in between 0.291 and 0.410, and in between 0.682 and 1.439, respectively. The proposed UV spectrophotometric method is found to be robust.Conclusion: The proposed UV-spectrophotometric method was validated according to the ICH guidelines, and results and statistical parameters demonstrated that the developed method is sensitive, precise, reliable, and simple for the estimation of norfloxacin present in taste masked drug-resin complex.


2019 ◽  
Vol 31 (1) ◽  
pp. 32-39
Author(s):  
Suman Shrivastava ◽  
Pooja Deshpande ◽  
S. J. Daharwal

Development of a method is crucial for discovery, development, and analysis of medicines in the pharmaceutical formulation. Method validation could also be thought to be one in all the foremost well-known areas in analytical chemistry as is reproduced within the substantial variety of articles submitted and presented in peer review journals every year. Validation of an analytical procedure is to demonstrate that it's appropriate for its intended purpose. Results from method validation are often wont to decide the quality, reliability and consistency of analytical results. Analytical methods need to be validated or revalidated. This review describes general approach towards validation process and validation parameters to be considered during validation of an analytical method. It also refers to various regulatory requirements like WHO, USFDA, EMEA, ICH, ISO/IEC. The parameters described here are according to ICH guidelines which include accuracy, precision, specificity, limit of detection, limit of quantification, linearity range and robustness.


Author(s):  
Sayyed Nazifa Sabir Ali ◽  
Lajporiya Mobina ◽  
Manjra Mehfuza ◽  
Patel Seema ◽  
Aejaz Ahmed ◽  
...  

Aims: To develop and validate a new, simple, rapid, precise, and accurate An Eco-friendly RP-HPLC and UV-Method Development and Validation for an estimation of Favipiravir in Bulk and pharmaceutical dosage form followed by Forced Degradation Studies. Study Design: This was employed for UV-visible (200-400 nm and 400-800 nm respectively) and RP-HPLC method development using C 18 inertsil column and optimization of variables for Favipiravir estimation in bulk and formulations. Place and Duration of the Study: The present work was carried out at Ali-allana College of Pharmacy, Akkalkuwa between the duration of November-2020 to February-2021. Methodology: UV-Spectroscopic method was developed for the estimation of Favipiravir in the bulk and pharmaceutical dosage form. The solvent selected for the Favipiravir UV analysis was water, the solution in a range of 2-10µg/ml was scanned in the UV region from 200-400 nm and the λmax value was determined. The RP-HPLC method was developed on inertsil ODS-3V C18 150 mm x 4.6mm x 5μ column using buffer pH 3.5: acetonitrile [90:10] as mobile phase at flow rate 1.0 ml/min and PDA detection at 358 nm. Results: The maximum absorbance was observed at 358 nm. The wavelength 358 nm was selected for further analysis of Favipiravir. The calibration curve was determined using drug concentrations ranging from 2-10 µg/ml. The % recovery for accuracy was 100.50-100.76%. The method was to be precise with a % RSD value 0.51-1.37 and 0.77-1.78 for intraday and Interday respectively. The limit of detection (LOD) and limit of quantification (LOQ) was found to be 0.0723 &0.219 µg/ml respectively by UV method. The RP-HPLC method was shown to be linear in the 50-250 μg/ml concentration range. The limit of detection (LOD) and limit of quantification (LOQ) was found to be 2.186 & 6.626 μg/ml respectively. The method was to be precise with a % RSD value 0.25-1.53 and 0.86-1.68 for intraday and inter-day respectively. Conclusion: Here we conclude that the developed UV and RP-HPLC methods are precise, accurate, sensitive, and reproducible for the quantitative estimation of Favipiravir bulk and its formulation. The developed method can be used by the pharmaceutical industries for the routine analysis of Favipiravir, in particular by UV and RP-HPLC. The main features of the proposed method are economic and eco-friendly with less retention time around 5.0 min.


2013 ◽  
Vol 25 (2) ◽  
pp. 180-185
Author(s):  
Shankar Mandal ◽  
AMH Rahman ◽  
MIR Mamun ◽  
Mohammad Shoeb ◽  
Nilufar Nahar

A method was developed and validated for quantitation of methyl eugenol and cuelure, the active ingredients of two formulated sex pheromones (bio-pesticides) Mukti and Jhilik by gas chromatography. Technical grade methyl eugenol and cuelure (purity 95- 96%) were used as standards. Calibration curves of methyl eugenol and cuelure were linear with correlation coefficient (r2) 0.9966 & 0.9988, respectively. Ten replicate analyses were done for both methyl eugenol & cuelure and quantity of the pheromones in the two formulated products were found to be 0.55 ± 0.11 and 0.56 ± 0.09 g/lure (Mean ± SD), respectively. The stability of both pheromones in solution and their diffusion from lures under UV-Vis light was determined for a period of 21 days. The results showed that diffusion of the both pheromones from lure were very fast and about two-third diffused within 10 days after exposure. Methyl eugenol was quite stable in solution, whereas cuelure was found to degrade slowly, and about 15 % cuelure degraded within 21 days. The recovery of methyl eugenol and cuelure from matrix were found to be 80.69 ± 3.14 and 78.48 ± 4.32 % (mean ± SD), respectively, where limit of detection (LOD) & limit of quantification (LOQ) were found to be 97 & 80 ppm, and 290 & 240 ppm, respectively. The developed method is very simple and can be used for estimation of the two sex pheromones. Journal of Bangladesh Chemical Society, Vol. 25(2), 180-185, 2012 DOI: http://dx.doi.org/10.3329/jbcs.v25i2.15084


2018 ◽  
Vol 10 (1) ◽  
pp. 74 ◽  
Author(s):  
Ayya Rajendra Prasad ◽  
Bannaravuri Thireesha

Objective: To develop and validate a novel, specific, precise and simple UV-spectrophotometric method for the estimation of lornoxicam present in microsponges.Methods: UV-spectrophotometric determination was performed with Thermo Scientific Evolution 201 UV-Vis spectrophotometer using methanol as a medium. The spectrum of the standard solution was run from 200-400 nm range for the determination of absorption maximum (λ max). λ max of lornoxicam was found at 353 nm. The absorbance of standard solutions of 3, 6, 9, 12 and 15, µg/ml of drug solution was measured at an absorption maximum at 353 nm against the blank. Then a graph was plotted by taking concentration on X-axis and absorbance on Y-axis which gave a straight line. Validation parameters such as linearity and range, selectivity and specificity, LOD and LOQ, accuracy, precision and robustness were evaluated as per ICH guidelines.Results: Linearity for the UV-spectrophotometric method was noted over a concentration range of 3.0-15.0 µg/ml with a correlation coefficient of 0.9995. The limit of detection (LOD) and limit of quantification (LOQ) for lornoxicam was found at 1.26 μg/ml and 3.82 μg/ml respectively. Accuracy was in between 99.21 and 99.60%. % RSD for repeatability, intraday precision and interday precision were found to be 0.473, in between 0.478 and 0.619 and in between 0.855 and 1.818 respectively. The proposed UV method is found to be robust.Conclusion: The proposed UV-Visible spectrophotometric method was validated according to the ICH guidelines and results and statistical parameters demonstrated that the developed method is sensitive, precise, reliable and simple for the estimation of lornoxicam present in microsponges.


2020 ◽  
Vol 13 (4) ◽  
pp. 362-373
Author(s):  
Gayathri Nallathambi ◽  
V Sekar ◽  
Surendra kumar.M

The aim of the study is to develop some new analytical method development and Validation of Quantitative Estimation of Anti-depressant Drug Vilazodone by UV and HPLC was found to be simple, specific, precise, accurate, rapid and economical. The method was developed and validated as per ICH guidelines, concerning accuracy, precision, linearity, ruggedness, limit of detection, limit of quantification and robustness and forced degradation studies. The GRACE ODS phenyl column (4.6 x 150mm,5μm) column was maintained at an ambient temperature and 232 nm λ max conditions. The mixture of di-potassium hydrogen phosphate with buffer (pH 7.4) and methanol in proportion 60:40v/v mobile phase was used in the flow rate of 1 ml/min. All validation methods shows good reproducibility and good recovery. The mean recoveries was found in the range between 99.6-99.9%. with % RSD values were within 2. The limit of detection and limit of quantification were found to be 0.05 μg/ml and 0.01 μg/ml respectively. The method was found to be having suitable application in routine laboratory analysis with high degree of accuracy and precision.


2011 ◽  
Vol 8 (3) ◽  
pp. 1309-1313 ◽  
Author(s):  
Kaushelendra Mishra ◽  
Himesh Soni ◽  
Govind Nayak ◽  
Sita Sharan Patel ◽  
A. K. Singhai

A simple, reproducible and efficient method for the determination of metformin hydrochloride (MET) was developed and validated. The analysis complied with Beer's law in the concentration range of 8-13 μg/mL at 233 nm for MET. In our study the validation of analytical method for determination of MET by UV in tablets formulation was performed in accordance the parameters including-system suitability, specificity, limit of quantification, limit of detection, linearity of response, accuracy, precision (reproducibility & repeatability), robustness (change of wave length±2 nm).


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (01) ◽  
pp. 28-34
Author(s):  
K. Vijaya Sri ◽  
M. Shiva Kumar ◽  
A. Sravani ◽  

The RP-HPLC were developed and validated for the estimation of lurasidone HCl as per ICH guidelines. A simple, fast, accurate and precise RP-HPLC method was developed by using methanol: water containing 0.01% ortho phosphoric acid in the ratio of 70:30 (V/V). The method was developed in Eclipse C18 column (100 mm × 4.6 mm, 3.5 μm particle size). The method was found to be linear in the range of 2.5- 15µg/mL with a correlation coefficient value of 0.999. The accuracy studies of RP-HPLC method was performed at three different levels, i.e., 50%, 100%, and 150% and recovery was found to be in the range of 100.1-100.6% .The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.30-0.92. Satisfactory validation was also obtained from recovery (99.8%) studies, intra-day and interday precision and robustness 2%. The proposed method was found to be accurate, precise and rapid for the analysis of lurasidone.


2021 ◽  
Vol 12 (3) ◽  
pp. 2286-2290
Author(s):  
Gowtham Reddy Cheruku ◽  
Sai Laasya Mithinti ◽  
Purushotham Saidu

The work discusses method development and validation. An uncomplicated, accurate, and straightforward method was developed for the drug Esomeprazole in bulk as well as Pharmaceutical dosage form. NaOH was used as the solvent. The maximum wavelength (ʎ max) for Esomeprazole was found to be 305nm. The validation was performed as per International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines for Accuracy linearity, precision, Limit of Detection (LOD) and Limit of Quantification (LOQ). Esomeprazole's recovery percentage (%) was 100.20%, respectively. Linearity for Esomeprazole was observed between 5-25µg/ml, respectively. Regression equation y=0.0407x-0.0122, regression coefficient (r²) is 0.9963 for Esomeprazole. Inter day and intraday precision were checked, % relative standard deviation values were less than 2. The regression equations were used to derive the Limit of Detection (LOD) and Limit of Quantification (LOQ) values. LOD value was found to be 0.734 µg/mL and LOQ value was 2.224 µg/mL for Esomeprazole. The assay of the marketed formulation was performed, which was between 98-102%.  So the method developed was simple and economical that can be adopted for routine tests. 


Sign in / Sign up

Export Citation Format

Share Document