scholarly journals DOCKING STUDY OF ALLICIN WITH SULFONYLUREA RECEPTOR 1, COMPLEX 1 AND PPARγ RECEPTOR ON INSULIN RESISTANCE

Author(s):  
Muhammad Andre Reynaldi ◽  
Hafrizal Riza ◽  
Sri Luliana

Objective: Allicin is a potential type 2 antidiabetic. Sulfonylurea receptor 1 (SUR1), nikotinamida adina dinukleotida dehydrogenase (Complex 1) and peroxisome proliferator-activated receptors gamma (PPARγ) are known as important receptors responsible in insulin resistance This study aimed to determine the physicochemical properties, and the affinity of allicin on SUR1, Complex 1 and PPARγ receptors based on the binding energy and the type of interaction.Methods: The physicochemical properties of allicin were analyzed using ChemOffice, and the binding energy and type of interaction were analyzed using the docking method with Autodock Vina.Results: The results from the analysis showed allicin has log p (logarithmic partition) 1.35, massa relativity (mr) 162.26 g/mol, and the binding energy of allicin on SUR1, Complex 1 and PPARγ are respectively-4.0;-3.0; and-4.1 kcal/mol. The type of interaction between allicin and receptors is van der waals.Conclusion: Allicin has good permeability and has the potential to bind to SUR1, Complex 1 and PPARγ receptors contributing to the activity of allicin as antidiabetic.

PPAR Research ◽  
2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoyan Sheng ◽  
Yuebo Zhang ◽  
Zhenwei Gong ◽  
Cheng Huang ◽  
Ying Qin Zang

Peroxisome proliferator-activated receptors (PPARs) are transcriptional factors involved in the regulation of insulin resistance and adipogenesis. Cinnamon, a widely used spice in food preparation and traditional antidiabetic remedy, is found to activate PPARγandα, resulting in improved insulin resistance, reduced fasted glucose, FFA, LDL-c, and AST levels in high-caloric diet-induced obesity (DIO) anddb/dbmice in its water extract form. In vitro studies demonstrate that cinnamon increases the expression of peroxisome proliferator-activated receptorsγandα(PPARγ/α) and their target genes such as LPL, CD36, GLUT4, and ACO in 3T3-L1 adipocyte. The transactivities of both full length and ligand-binding domain (LBD) of PPARγand PPARαare activated by cinnamon as evidenced by reporter gene assays. These data suggest that cinnamon in its water extract form can act as a dual activator of PPARγandα, and may be an alternative to PPARγactivator in managing obesity-related diabetes and hyperlipidemia.


PPAR Research ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Francesco Negro

Insulin resistance and type 2 diabetes are associated with hepatitis C virus infection. A wealth of clinical and experimental data suggests that the virus is directly interfering with the insulin signalling in hepatocytes. In the case of at least one viral genotype (the type 3a), insulin resistance seems to be directly mediated by the downregulation of the peroxisome proliferator-activated receptorγ. Whether and how this interaction may be manipulated pharmacologically, in order to improve the responsiveness to antivirals of insulin resistant chronic hepatitis C, patients remain to be fully explored.


Author(s):  
Anjugam C ◽  
Sridevi M ◽  
Gnanendra Ts

 Objective: The purpose of this study is to explore the anticancer activity of morin compound against human cyclooxygenase-2 (COX-2) and peroxisome-proliferator-activated receptors (PPARs) isotypes (PPARα and PPARγ) through in silico molecular docking studies.Methods: The 3D structures of human COX-2 complexed with ibuprofen (PDB ID: 4PH9), PPARα complexed with a synthetic agonist (2S)-2-(4- methoxy-3-{[(pyren-1-yl carbonyl) amino] methyl} benzyl) butanoic acid (PDB ID: 3VI8) and PPARγ complexed indomethacin (PDB ID: 3ADX) were retrieved from protein databank. The cocrystallized sites were considered as binding sites, and the docking with morin compound was performed along with their respective cocrystals for each target and compared their interactions and binding affinities.Results: It is observed that the morin compound exhibited better binding energy of -32.9528 kJ/mol against PPARα followed by COX-2 (binding energy: −18.4311 kJ/mol) and PPARγ (binding energy: −17.4228 kJ/mol) when compared to their cocrystallized ligands.Conclusion: The present study suggests that morin compound might serve as potential alternatives in the prevention of skin cancers by showing better activity against PPARα.


Author(s):  
Hilal Ozturk ◽  
N. Yorulmaz ◽  
Mustafa Durgun ◽  
Harun Basoglu

Abstract Natural products from plants, such as flavonoids, arouse immense interest in medicine because of the therapeutic and many other bioactive properties. The molecular docking is a very useful method to screen the molecules based on their free binding energies and give important structural suggestions about how molecules might activate or inhibit the target receptor by comparing reference molecules. Alliin and Allicin differ from many other flavonoids because of containing no benzene rings and having nitrogen and sulfur atoms in their structure. In this study Alliin and Allicin affinity on AMPA, NMDA and GABA-A receptors were evaluated in the central nervous system by using the molecular docking method. Both Alliin and Allicin indicated no inhibitory effects. However Alliin showed significant selectivity to human AMPA receptor (3RN8) as an excitatory. The binding energy of glutamate to 3RN8 was -6.61 kcal/mol, while the binding energy of Allin was -8.08 kcal/mol. Furthermore Alliin’s affinity to the other AMPA and NMDA receptors is quite satisfactory compared to the reference molecule glutamate. In conclusion based on the molecular docking study, Alliin can be useful for synaptic plasticity studies whereas might be enhance seizure activity because of the increased permeability to cations. It also can be beneficial to improve learning and memory and can be used as a supportive product to the hypofunction of NMDA associated problems.


2013 ◽  
Vol 67 ◽  
pp. 1283-1299 ◽  
Author(s):  
Małgorzata Chmielewska-Kassassir ◽  
Lucyna A. Woźniak ◽  
Paweł Ogrodniczek ◽  
Marzena Wójcik

2007 ◽  
Vol 32 (5) ◽  
pp. 874-883 ◽  
Author(s):  
Deborah M. Muoio ◽  
Timothy R. Koves

Dyslipidemia and intramuscular accumulation of fatty acid metabolites are increasingly recognized as core features of obesity and type 2 diabetes. Emerging evidence suggests that normal physiological adaptations to a heavy lipid load depend on the coordinated actions of broad transcriptional regulators such as the peroxisome proliferator activated receptors (PPARs) and PPARγ coactivator 1α (PGC1α). The application of transcriptomics and targeted metabolic profiling tools based on mass spectrometry has led to our finding that lipid-induced insulin resistance is a condition in which upregulation of PPAR-targeted genes and high rates of β-oxidation are not supported by a commensurate upregulation of tricarboxylic acid (TCA) cycle activity. In contrast, exercise training enhances mitochondrial performance, favoring tighter coupling between β-oxidation and the TCA cycle, and concomitantly restores insulin sensitivity in animals fed a chronic high-fat diet. The exercise-activated transcriptional coactivator, PGC1α, plays a key role in coordinating metabolic flux through these 2 intersecting metabolic pathways, and its suppression by overfeeding may contribute to diet-induced mitochondrial dysfunction. Our emerging model predicts that muscle insulin resistance arises from a mitochondrial disconnect between β-oxidation and TCA cycle activity. Understanding of this “disconnect” and its molecular basis may lead to new therapeutic approaches to combatting metabolic disease.


2018 ◽  
Vol 19 (7) ◽  
pp. 2124 ◽  
Author(s):  
Patricia Corrales ◽  
Antonio Vidal-Puig ◽  
Gema Medina-Gómez

Peroxisome proliferator-activated receptors (PPARs) are members of a family of nuclear hormone receptors that exert their transcriptional control on genes harboring PPAR-responsive regulatory elements (PPRE) in partnership with retinoid X receptors (RXR). The activation of PPARs coordinated by specific coactivators/repressors regulate networks of genes controlling diverse homeostatic processes involving inflammation, adipogenesis, lipid metabolism, glucose homeostasis, and insulin resistance. Defects in PPARs have been linked to lipodystrophy, obesity, and insulin resistance as a result of the impairment of adipose tissue expandability and functionality. PPARs can act as lipid sensors, and when optimally activated, can rewire many of the metabolic pathways typically disrupted in obesity leading to an improvement of metabolic homeostasis. PPARs also contribute to the homeostasis of adipose tissue under challenging physiological circumstances, such as pregnancy and aging. Given their potential pathogenic role and their therapeutic potential, the benefits of PPARs activation should not only be considered relevant in the context of energy balance-associated pathologies and insulin resistance but also as potential relevant targets in the context of diabetic pregnancy and changes in body composition and metabolic stress associated with aging. Here, we review the rationale for the optimization of PPAR activation under these conditions.


Sign in / Sign up

Export Citation Format

Share Document