scholarly journals PHYTOCHEMICAL TO INTERACT WITH NLS BINDING SITE ON IMA3 TO INHIBIT IMPORTIN Α/Β1 MEDIATED NUCLEAR IMPORT OF SARS-COV-2 CARGO

Author(s):  
BHARATH B. R. ◽  
HRISHIKESH DAMLE ◽  
SHIBAN GANJU ◽  
LATHA DAMLE

Objective: Ivermectin is an FDA-approved, broad-spectrum anti-parasitic agent. It was originally identified as an inhibitor of interaction between the human 29 immunodeficiency virus-1 (HIV-1) integrase protein (IN) and the Importin (IMP) α/β1 30 heterodimers, which are responsible for IN nuclear import. Recent studies demonstrate that ivermectin is worthy of further consideration as a possible SARS-CoV-2 antiviral. Methods: We built the pathogen-host interactome and analyzed it using PHISTO. We compared Ivermectin and plant molecules for their interaction with Importin α3 (IMA3) using molecular docking studies. Results: A phytochemical ATRI001 with the lowest binding energy-7.290 Kcal/mol was found to be superior to Ivermectin with binding energy-4.946 Kcal/mol. Conclusion: ATRI001 may be a potential anti-SARS-CoV-2 agent; however, it requires clinical evaluation.

2007 ◽  
Vol 81 (10) ◽  
pp. 5284-5293 ◽  
Author(s):  
Yuko Nitahara-Kasahara ◽  
Masakazu Kamata ◽  
Takuya Yamamoto ◽  
Xianfeng Zhang ◽  
Yoichi Miyamoto ◽  
...  

ABSTRACT Monocytes/macrophages are major targets of human immunodeficiency virus type 1 (HIV-1) infection. The viral preintegration complex (PIC) of HIV-1 enters the nuclei of monocyte-derived macrophages, but very little PIC migrates into the nuclei of immature monocytes. Vpr, one of the accessory gene products of HIV-1, is essential for the nuclear import of PIC in these cells, although the role of Vpr in the entry mechanism of PIC remains to be clarified. We have shown previously that Vpr is targeted to the nuclear envelope and then transported into the nucleus by importin α alone, in an importin β-independent manner. Here we demonstrate that the nuclear import of Vpr is strongly promoted by the addition of cytoplasmic extract from macrophages but not of that from monocytes and that the nuclear import activity is lost with immunodepletion of importin α from the cytoplasmic extract. Immunoblot analysis and real-time PCR demonstrate that immature monocytes express importin α at low levels, whereas the expression of three major importin α isoforms markedly increases upon their differentiation into macrophages, indicating that the expression of importin α is required for nuclear import of Vpr. Furthermore, interaction between importin α and the N-terminal α-helical domain of Vpr is indispensable, not only for the nuclear import of Vpr but also for HIV-1 replication in macrophages. This study suggests the possibility that the binding of Vpr to importin α, preceding a novel nuclear import process, is a potential target for therapeutic intervention.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Babar Ali ◽  
Qazi Mohammad Sajid Jamal ◽  
Showkat R. Mir ◽  
Saiba Shams ◽  
Mohammad Amjad Kamal

AbstractSince 3000 B.C., evergreen plant Thea sinensis (Theaceae) is used both as a social and medicinal beverage. Leaves of T. sinensis contain amino acids, vitamins, caffeine, polysaccharides and polyphenols. Most of the natural medicinal actions of tea are due to the availability and abundance of polyphenols mainly catechins. It has also been stated that some catechins were absorbed more rapidly than other compounds after the oral administration of tea and could increase the bio-enhancing activities of anticancer drugs by inhibiting P-glycoprotein (P-gp). The results of the molecular docking showed that polyphenols bind easily to the active P-gp site. All compounds exhibited fluctuating binding affinity ranged from −11.67 to −8.36 kcal/mol. Observed binding energy required for theaflavin to bind to P-gp was lowest (−11.67 kcal/mol). The obtained data that supports all the selected polyphenols inhibited P-gp and therefore may enhance the bioavailability of drugs. This study may play a vital role in finding hotspots in P-gp and eventually may be proved useful in designing compounds with high affinity and specificity to the protein.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1051
Author(s):  
Edgardo Becerra ◽  
Giovanny Aguilera-Durán ◽  
Laura Berumen ◽  
Antonio Romo-Mancillas ◽  
Guadalupe García-Alcocer

Multidrug resistance protein-4 (MRP4) belongs to the ABC transporter superfamily and promotes the transport of xenobiotics including drugs. A non-synonymous single nucleotide polymorphisms (nsSNPs) in the ABCC4 gene can promote changes in the structure and function of MRP4. In this work, the interaction of certain endogen substrates, drug substrates, and inhibitors with wild type-MRP4 (WT-MRP4) and its variants G187W and Y556C were studied to determine differences in the intermolecular interactions and affinity related to SNPs using protein threading modeling, molecular docking, all-atom, coarse grained, and umbrella sampling molecular dynamics simulations (AA-MDS and CG-MDS, respectively). The results showed that the three MRP4 structures had significantly different conformations at given sites, leading to differences in the docking scores (DS) and binding sites of three different groups of molecules. Folic acid (FA) had the highest variation in DS on G187W concerning WT-MRP4. WT-MRP4, G187W, Y556C, and FA had different conformations through 25 ns AA-MD. Umbrella sampling simulations indicated that the Y556C-FA complex was the most stable one with or without ATP. In Y556C, the cyclic adenosine monophosphate (cAMP) and ceefourin-1 binding sites are located out of the entrance of the inner cavity, which suggests that both cAMP and ceefourin-1 may not be transported. The binding site for cAMP and ceefourin-1 is quite similar and the affinity (binding energy) of ceefourin-1 to WT-MRP4, G187W, and Y556C is greater than the affinity of cAMP, which may suggest that ceefourin-1 works as a competitive inhibitor. In conclusion, the nsSNPs G187W and Y556C lead to changes in protein conformation, which modifies the ligand binding site, DS, and binding energy.


2017 ◽  
Vol 14 (12) ◽  
pp. e1700295 ◽  
Author(s):  
Saghi Sepehri ◽  
Sepehr Soleymani ◽  
Rezvan Zabihollahi ◽  
Mohammad R. Aghasadeghi ◽  
Mehdi Sadat ◽  
...  

2019 ◽  
Vol 17 (2) ◽  
pp. 105-114
Author(s):  
Pankaj Wadhwa ◽  
Priti Jain ◽  
Arpit Patel ◽  
Shantanu Shinde ◽  
Hemant R. Jadhav

<P>Background: A series of novel 3-(1,3-dioxoisoindolin-2-yl)-N-substituted phenyl benzamide derivatives was synthesized and tested in vitro against human immunodeficiency virus type-1 Integrase (HIV-1 IN). Methods: Out of the 18 analogues, six (compounds 16c, 16h, 16i, 16m, 16n and 16r) showed significant inhibition of strand transfer by HIV-1 integrase. For these six compounds. IC50 was below 5.0 µM. In silico docking studies revealed that the presence of 2-phenyl isoindoline-1,3-dione motif was essential as it was found to interact with active site magnesium. Results: To further confirm the results, cell-based HIV-1 and HIV-2 inhibitory assay was carried out. Conclusion: These compounds possess structural features not seen in previously reported HIV-1 integrase inhibitors and thus can help further optimization of anti-HIV-1 integrase activity.</P>


2000 ◽  
Vol 74 (24) ◽  
pp. 11811-11824 ◽  
Author(s):  
Kalpana Gupta ◽  
David Ott ◽  
Thomas J. Hope ◽  
Robert F. Siliciano ◽  
Jef D. Boeke

ABSTRACT Active nuclear import of the human immunodeficiency virus type 1 (HIV-1) preintegration complex (PIC) is essential for the productive infection of nondividing cells. Nuclear import of the PIC is mediated by the HIV-1 matrix protein, which also plays several critical roles during viral entry and possibly during virion production facilitating the export of Pr55Gag and genomic RNA. Using a yeast two-hybrid screen, we identified a novel human virion-associated matrix-interacting protein (VAN) that is highly conserved in vertebrates and expressed in most human tissues. Its expression is upregulated upon activation of CD4+ T cells. VAN is efficiently incorporated into HIV-1 virions and, like matrix, shuttles between the nucleus and cytoplasm. Furthermore, overexpression of VAN significantly inhibits HIV-1 replication in tissue culture. We propose that VAN regulates matrix nuclear localization and, by extension, both nuclear import of the PIC and export of Pr55Gag and viral genomic RNA during virion production. Our data suggest that this regulatory mechanism reflects a more global process for regulation of nucleocytoplasmic transport.


2002 ◽  
Vol 76 (23) ◽  
pp. 12087-12096 ◽  
Author(s):  
Jeffrey D. Dvorin ◽  
Peter Bell ◽  
Gerd G. Maul ◽  
Masahiro Yamashita ◽  
Michael Emerman ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) can infect nondividing cells productively because the nuclear import of viral nucleic acids occurs in the absence of cell division. A number of viral factors that are present in HIV-1 preintegration complexes (PICs) have been assigned functions in nuclear import, including an essential valine at position 165 in integrase (IN-V165) and the central polypurine tract (cPPT). In this article, we report a comparison of the replication and infection characteristics of viruses with disruptions in the cPPT and IN-V165. We found that viruses with cPPT mutations still replicated productively in both dividing and nondividing cells, while viruses with a mutation at IN-V165 did not. Direct observation of the subcellular localization of HIV-1 cDNAs by fluorescence in situ hybridization revealed that cDNAs synthesized by both mutant viruses were readily detected in the nucleus. Thus, neither the cPPT nor the valine residue at position 165 of integrase is essential for the nuclear import of HIV-1 PICs.


Sign in / Sign up

Export Citation Format

Share Document