scholarly journals Study of Endogen Substrates, Drug Substrates and Inhibitors Binding Conformations on MRP4 and Its Variants by Molecular Docking and Molecular Dynamics

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1051
Author(s):  
Edgardo Becerra ◽  
Giovanny Aguilera-Durán ◽  
Laura Berumen ◽  
Antonio Romo-Mancillas ◽  
Guadalupe García-Alcocer

Multidrug resistance protein-4 (MRP4) belongs to the ABC transporter superfamily and promotes the transport of xenobiotics including drugs. A non-synonymous single nucleotide polymorphisms (nsSNPs) in the ABCC4 gene can promote changes in the structure and function of MRP4. In this work, the interaction of certain endogen substrates, drug substrates, and inhibitors with wild type-MRP4 (WT-MRP4) and its variants G187W and Y556C were studied to determine differences in the intermolecular interactions and affinity related to SNPs using protein threading modeling, molecular docking, all-atom, coarse grained, and umbrella sampling molecular dynamics simulations (AA-MDS and CG-MDS, respectively). The results showed that the three MRP4 structures had significantly different conformations at given sites, leading to differences in the docking scores (DS) and binding sites of three different groups of molecules. Folic acid (FA) had the highest variation in DS on G187W concerning WT-MRP4. WT-MRP4, G187W, Y556C, and FA had different conformations through 25 ns AA-MD. Umbrella sampling simulations indicated that the Y556C-FA complex was the most stable one with or without ATP. In Y556C, the cyclic adenosine monophosphate (cAMP) and ceefourin-1 binding sites are located out of the entrance of the inner cavity, which suggests that both cAMP and ceefourin-1 may not be transported. The binding site for cAMP and ceefourin-1 is quite similar and the affinity (binding energy) of ceefourin-1 to WT-MRP4, G187W, and Y556C is greater than the affinity of cAMP, which may suggest that ceefourin-1 works as a competitive inhibitor. In conclusion, the nsSNPs G187W and Y556C lead to changes in protein conformation, which modifies the ligand binding site, DS, and binding energy.

2020 ◽  
Vol 16 (4) ◽  
pp. 451-459 ◽  
Author(s):  
Fortunatus C. Ezebuo ◽  
Ikemefuna C. Uzochukwu

Background: Sulfotransferase family comprises key enzymes involved in drug metabolism. Oxamniquine is a pro-drug converted into its active form by schistosomal sulfotransferase. The conformational dynamics of side-chain amino acid residues at the binding site of schistosomal sulfotransferase towards activation of oxamniquine has not received attention. Objective: The study investigated the conformational dynamics of binding site residues in free and oxamniquine bound schistosomal sulfotransferase systems and their contribution to the mechanism of oxamniquine activation by schistosomal sulfotransferase using molecular dynamics simulations and binding energy calculations. Methods: Schistosomal sulfotransferase was obtained from Protein Data Bank and both the free and oxamniquine bound forms were subjected to molecular dynamics simulations using GROMACS-4.5.5 after modeling it’s missing amino acid residues with SWISS-MODEL. Amino acid residues at its binding site for oxamniquine was determined and used for Principal Component Analysis and calculations of side-chain dihedrals. In addition, binding energy of the oxamniquine bound system was calculated using g_MMPBSA. Results: The results showed that binding site amino acid residues in free and oxamniquine bound sulfotransferase sampled different conformational space involving several rotameric states. Importantly, Phe45, Ile145 and Leu241 generated newly induced conformations, whereas Phe41 exhibited shift in equilibrium of its conformational distribution. In addition, the result showed binding energy of -130.091 ± 8.800 KJ/mol and Phe45 contributed -9.8576 KJ/mol. Conclusion: The results showed that schistosomal sulfotransferase binds oxamniquine by relying on hybrid mechanism of induced fit and conformational selection models. The findings offer new insight into sulfotransferase engineering and design of new drugs that target sulfotransferase.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11171
Author(s):  
Neha Srivastava ◽  
Prekshi Garg ◽  
Prachi Srivastava ◽  
Prahlad Kishore Seth

Background & Objectives The massive outbreak of Novel Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) has turned out to be a serious global health issue worldwide. Currently, no drugs or vaccines are available for the treatment of COVID-19. The current computational study was attempted to identify a novel therapeutic inhibitor against novel SARS-CoV-2 using in silico drug discovery pipeline. Methods In the present study, the human angiotensin-converting enzyme 2 (ACE2) receptor was the target for the designing of drugs against the deadly virus. The 3D structure of the receptor was modeled & validated using a Swiss-model, Procheck & Errat server. A molecular docking study was performed between a group of natural & synthetic compounds having proven anti-viral activity with ACE2 receptor using Autodock tool 1.5.6. The molecular dynamics simulation study was performed using Desmond v 12 to evaluate the stability and interaction of the ACE2 receptor with a ligand. Results Based on the lowest binding energy, confirmation, and H-bond interaction, cinnamic acid (−5.20 kcal/mol), thymoquinone (−4.71 kcal/mol), and andrographolide (Kalmegh) (−4.00 kcal/mol) were screened out showing strong binding affinity to the active site of ACE2 receptor. MD simulations suggest that cinnamic acid, thymoquinone, and andrographolide (Kalmegh) could efficiently activate the biological pathway without changing the conformation in the binding site of the ACE2 receptor. The bioactivity and drug-likeness properties of compounds show their better pharmacological property and safer to use. Interpretation & Conclusions The study concludes the high potential of cinnamic acid, thymoquinone, and andrographolide against the SARS-CoV-2 ACE2 receptor protein. Thus, the molecular docking and MD simulation study will aid in understanding the molecular interaction between ligand and receptor binding site, thereby leading to novel therapeutic intervention.


Author(s):  
BHARATH B. R. ◽  
HRISHIKESH DAMLE ◽  
SHIBAN GANJU ◽  
LATHA DAMLE

Objective: Ivermectin is an FDA-approved, broad-spectrum anti-parasitic agent. It was originally identified as an inhibitor of interaction between the human 29 immunodeficiency virus-1 (HIV-1) integrase protein (IN) and the Importin (IMP) α/β1 30 heterodimers, which are responsible for IN nuclear import. Recent studies demonstrate that ivermectin is worthy of further consideration as a possible SARS-CoV-2 antiviral. Methods: We built the pathogen-host interactome and analyzed it using PHISTO. We compared Ivermectin and plant molecules for their interaction with Importin α3 (IMA3) using molecular docking studies. Results: A phytochemical ATRI001 with the lowest binding energy-7.290 Kcal/mol was found to be superior to Ivermectin with binding energy-4.946 Kcal/mol. Conclusion: ATRI001 may be a potential anti-SARS-CoV-2 agent; however, it requires clinical evaluation.


1987 ◽  
Vol 243 (2) ◽  
pp. 359-364 ◽  
Author(s):  
P L H Hwang

Specific high-affinity binding sites for non-steroidal anti-oestrogens such as tamoxifen have been identified in many animal and human tissues. The function of these binding sites and the nature of their endogenous ligands are currently unknown. Our laboratory has previously reported that unsaturated fatty acids at micromolar concentrations inhibited [3H]tamoxifen binding to the anti-oestrogen-binding sites in rat liver, raising the possibility that fatty acids might represent endogenous ligands for these sites. These studies have now been extended to examine the mechanism by which fatty acids inhibit [3H]tamoxifen binding to the anti-oestrogen-binding site. Saturation analysis revealed that increasing concentrations of oleic acid progressively decreased the apparent binding affinity of these sites for [3H]tamoxifen without decreasing the total number of binding sites; however, the apparent dissociation constant did not vary linearly with the prevailing oleic acid concentration, suggesting that the inhibition of [3H]tamoxifen binding by fatty acid was not competitive in nature. Kinetic studies of [3H]tamoxifen binding showed that oleic acid did not affect the rate of association, but increased the rate of dissociation of [3H]tamoxifen from the anti-oestrogen-binding site; the latter finding would not be expected if oleic acid acted as a competitive inhibitor. Furthermore, incubation of a rat microsomal fraction with [3H]oleic acid in the absence and presence of excess non-radioactively labelled tamoxifen also failed to demonstrate direct competition between oleic acid and tamoxifen for the same binding site. It is concluded that oleic acid, and presumably other unsaturated fatty acids, do not compete for the anti-oestrogen-binding site and probably reduce its tamoxifen-binding affinity by some other mechanism, such as perturbation of the lipid environment of the binding site. The biological significance of this interaction of unsaturated fatty acids with the anti-oestrogen-binding site remains to be elucidated.


Sign in / Sign up

Export Citation Format

Share Document