scholarly journals OPTIMIZED AND VALIDATED SPECTROPHOTOMETRIC METHOD FOR THE DETERMINATION OF AMPICILLIN IN PHARMACEUTICAL FORMULATIONS

Author(s):  
S. K. MANIRUL HAQUE

Objective: A simple, precise, and accurate spectrophotometric method has been developed to determine Ampicillin in pharmaceutical formulations. Methods: The proposed method, based on the carboxylic acid group reaction, present in Ampicillin with a mixture of KIO3 and KI, form a yellow-colored product in an aqueous medium. The response was allowed to proceed at 25±1 °C, and absorbance measured after 5 min against a reagent blank prepared simultaneously using a UV-Vis spectrophotometer. The parameters verified were specificity, linearity, linearity range, accuracy, precision, detection limit, quantitation limit, robustness, and ruggedness. Results: The yellow-colored product was measured at 352 nm against the reagent blank using UV–Vis spectrophotometer. The linear dynamic range of concentration was 0.25–2.5 µg/ml with a correlation coefficient of 0.9999. The LOD, LOQ values to be 0.086 and 0.261 µg/ml, respectively, for the proposed method. The percentage of recoveries was 98.27–100.89% with an acceptable relative standard deviation (±2%). The robustness and ruggedness values were excellent. Conclusion: The ICH guidelines for pharmaceuticals and human use were followed and applied to validate the proposed method. The method was compared with available literature and found similar results that confirmed the reliability and effective way for Ampicillin's determination.

Author(s):  
JEEVANA JYOTHI B ◽  
VENKATA KAVYA R

Objective: A new, economical, precise, linear, sensitive, accurate, ultraviolet (UV) spectrophotometric method for the estimation of new antiviral repurposing drug favipiravir as there is no reported simple UV spectrophotometric method for estimation. The efforts were made for development and validation of favipiravir as per ICH guidelines, because drug has a wide scope for formulations to be developed for treating different viruses. Methods: This method was developed using ethanol and water as a solvent. Favipiravir showed the absorption maxima at 234 nm. A Shimadzu UV–visible spectrophotometer (UV JAPAN 1801) was used to carry out spectral analysis. Results: The developed method was linear for a range of 0–10 μg/ml and displayed a good correlation coefficient of 0.9995. Accuracy of the method was estimated using a recovery study. The amount of drug recovered was found to be in the range of 99.30–99.91%. The % relative standard deviation value of intraday precision was found to be 0.408% and interday precision was found to be in the range of 0.348–0.693%. The % relative standard deviation found to be <2 which are indicative of the precision and reproducibility of the method. Detection limit and quantitation limit were noticed as 0.095 and 0.290, respectively. Conclusion: The developed UV spectrophotometric method was validated statistically for linearity, accuracy, precision, and sensitivity and results proved that the method can be employed for routine analysis of favipiravir.


Author(s):  
Vishal N Kushare ◽  
Sachin S Kushare ◽  
Sagar V Ghotekar

UV Spectrophotometric method was developed and validated for the quantitative determination of Ozagrel in bulk drug and in pharmaceutical formulations. Ozagrel shows the maximum absorbance at 270 nm. Ozagrel follows Beer’s law in the concentration range of 1.0-10.0 µg/ml (r = 0.999). The detection limit (DL) and quantitation limit (QL) were 0.4629 and 1.4027 µg/ml respectively. Accuracy and precision were found to be satisfactory. The developed methods were validated according to ICH guidelines. All the validation parameters were found to be satisfactory accordance with the standard values. Therefore, the proposed method can be used for routine practice for the determination of Ozagrel in assay of bulk drug and pharmaceutical formulations.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (02) ◽  
pp. 16-20
Author(s):  
L Mohankrishna ◽  
◽  
P. J. Reddy ◽  
B. P Reddy. ◽  
P. Navya

A sensitive and precise HPLC procedure has been developed for the assay of amphotericin B in bulk samples and pharmaceutical formulations by using a C18 column [Kromosil, C18, (5 µm, 4.6mm x 250 mm; Make. Waters)], and mobile phase combination is 1% formic acid in water and acetonitrile in ratio of 45:55 V/V. The procedure has been validated as per the ICH guidelines. The λmax of detection was fixed at 407 nm, so that there was less interference from mobile phase with highest sensitivity according to UV analysis. Calibration plots were linear in the range of 10-100 µg/mL and the LOD and LOQ were 0.02 µg/mL and 0.06 µg/mL respectively. The high recovery and low relative standard deviation confirm the suitability of the method for routine quality control determination of amphotericin B in different formulations.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Ibrahim A. Darwish ◽  
Heba H. Abdine ◽  
Sawsan M. Amer ◽  
Lama I. Al-Rayes

Simple and rapid spectrophotometric method has been developed and validated for the determination of paroxetine (PRX) in tablets. The proposed method was based on nucleophilic substitution reaction of PRX with 1,2-naphthoquinone-4-sulphonate (NQS) in an alkaline medium to form an orange-colored product of maximum absorption peak () at 488 nm. The stoichiometry and kinetics of the reaction were studied, and the reaction mechanism was postulated. Under the optimized reaction conditions, Beer's law correlating the absorbance (A) with PRX concentration (C) was obeyed in the range of 1–8 g . The regression equation for the calibration data was: A = 0.0031 + 0.1609 C, with good correlation coefficients (0.9992). The molar absorptivity () was L  1 . The limits of detection and quantitation were 0.3 and 0.8 g , respectively. The precision of the method was satisfactory; the values of relative standard deviations did not exceed 2%. The proposed method was successfully applied to the determination of PRX in its pharmaceutical tablets with good accuracy and precisions; the label claim percentage was %. The results obtained by the proposed method were comparable with those obtained by the official method.


2013 ◽  
Vol 10 (3) ◽  
pp. 965-970
Author(s):  
Baghdad Science Journal

A simple, rapid and sensitive spectrophotometric method has been developed for the determination of captopril in aqueous solution. The method is based on reaction of captopril with 2,3-dichloro 1,4- naphthoquinon(Dichlone) in neutral medium to form a stable yellow colored product which shows maximum absorption at 347 nm with molar absorptivity of 5.6 ×103 L.mole-1. cm-1. The proposed method is applied successfully for determination of captopril in commercial pharmaceutical tablets.


Author(s):  
Jaspreet Kaur ◽  
Daljit Kaur ◽  
Sukhmeet Singh

Objective: A simple, accurate, and selective ultraviolet-spectrophotometric method has been developed for the estimation of febuxostat in the bulk and pharmaceutical dosage forms.Method: The method was developed and validated according to International Conference on Harmonization (ICH Q2 R1) guidelines. The developed method was validated statistically with respect to linearity, range, precision, accuracy, ruggedness, limit of detection (LOD), limit of quantitation (LOQ), and recovery. Specificity of the method was demonstrated by applying different stressed conditions to drug samples such as acid hydrolysis, alkaline hydrolysis, oxidative, photolytic, and thermal degradation.Results: The study was conducted using phosphate buffer pH 6.8 and λmax was found to be 312 nm. Standard plot having a concentration range of 1–10 μg/ml showed a good linear relationship with R2=0.999. The LOD and LOQ were found to be 0.118 μg/ml and 0.595 μg/ml, respectively. Recovery and percentage relative standard deviations were found to be 100.157±0.332% and <2%, respectively.Conclusion: Proposed method was successfully applicable to the pharmaceutical formulations containing febuxostat. Thus, the developed method is found to be simple, sensitive, accurate, precise, reproducible, and economical for the determination of febuxostat in pharmaceutical dosage forms.


Separations ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 55
Author(s):  
Natalia Casado ◽  
Zhengjin Jiang ◽  
María Ángeles García ◽  
María Luisa Marina

A chiral analytical methodology was developed by nano-liquid chromatography (nano-LC) enabling the enantiomeric separation of two chiral drugs, lacosamide (novel antiepileptic drug) and colchicine (antiuremic drug), commercialized as pure enantiomers. A capillary column lab-packed with an amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase was used in a lab-assembled nano-LC system. Lacosamide and colchicine enantiomers were separated in less than 8.0 and 9.0 min, respectively, with resolution values of 1.6 and 2.3, using 20 nL of sample and 1.8 µL of mobile phase per analysis. The analytical characteristics of the proposed methodology were evaluated according to the International Council for Harmonisation (ICH) guidelines, showing good analytical performance with good recoveries (97–98% and 100–103%) and precision values (relative standard deviation (RSD) <10.5 and <3.0%) for lacosamide and colchicine enantiomers, respectively. LODs were 1.7 and 2.0 µg/mL for (S)- and (R)-lacosamide, respectively, and 1.0 µg/mL for both colchicine enantiomers. Additionally, the developed methodology enabled to detect a 0.1% of the enantiomeric impurities, fulfilling the ICH regulation requirements. The method was applied to the determination of lacosamide and colchicine enantiomers in different pharmaceutical formulations to ensure their quality control. The content of the enantiomeric impurities was below a 0.1% and the amount of (R)-lacosamide and (S)-colchicine agreed with their labeled contents.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Garima Balwani ◽  
Emil Joseph ◽  
Satish Reddi ◽  
Vibhu Nagpal ◽  
Ranendra N. Saha

A new, simple, rapid, sensitive, accurate, and affordable spectrofluorimetric method was developed and validated for the estimation of ganciclovir in bulk as well as in marketed formulations. The method was based on measuring the native fluorescence of ganciclovir in 0.2 M hydrochloric acid buffer of pH 1.2 at 374 nm after excitation at 257 nm. The calibration graph was found to be rectilinear in the concentration range of 0.25–2.00 μg mL−1. The limit of quantification and limit of detection were found to be 0.029 μg mL−1and 0.010μg mL−1, respectively. The method was fully validated for various parameters according to ICH guidelines. The results demonstrated that the procedure is accurate, precise, and reproducible (relative standard deviation <2%) and can be successfully applied for the determination of ganciclovir in its commercial capsules with average percentage recovery of 101.31 ± 0.90.


2008 ◽  
Vol 14 (4) ◽  
pp. 261-264 ◽  
Author(s):  
Ivana Savic ◽  
Goran Nikolic ◽  
Ivan Savic ◽  
Vladimir Bankovic

This paper presents the experimental results for the simultaneous spectrophotometric determination of two active components in nasal solutions. The resolution of two-component mixtures of timazolin and phenylephrine has been accomplished by using partial least-squares. The method comprised of the absorptivity measurement in a nasal solution at wavelengths of 265 and 272 nm, respectively. Notwithstanding the presence of two components and their high degree of spectral overlap, they have been determined simultaneously with high accuracy and precision, with no interference, rapidly and without resorting to extraction procedures using non aqueous solvents. This method was tested and validated for various parameters according to ICH guidelines. The results demonstrated that the procedure is accurate, precise and reproducible (relative standard deviation <2 %), while being simple, cheap and less time consuming. The method was applied for the analysis of these drug substances in their commercial pharmaceutical formulations.


2009 ◽  
Vol 6 (s1) ◽  
pp. S163-S170 ◽  
Author(s):  
R. Singh Gujral ◽  
S. Manirul Haque ◽  
P. Shanker

An accurate and validated spectrophotometric method was developed for the determination of gabapentin. This is simple, sensitive and low cost UV spectrophotometric method. The method is based on the direct measurement of the native absorbance of the drug. The detection was done at 210 nm. The method was linear in the range of 0.25 - 3.5 µ g/mL with correlation coefficient of 0.9999. It is validated according to the ICH guidelines with respect to linearity, selectivity, accuracy and precision, limit of quantitation and limit of detection. The method has been applied to assess gabapentin in pharmaceutical formulations with good accuracy and precision and relatively free of interference from coexisting substances.


Sign in / Sign up

Export Citation Format

Share Document