scholarly journals Biogas Production from Co-Digestion of Poultry Manure and Orange Peel through Thermo-Chemical Pre-Treatments in Batch Fermentation

2016 ◽  
Vol 1 (4) ◽  
pp. 777-795
Author(s):  
Misgana Lami
Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3573 ◽  
Author(s):  
Meneses-Quelal Orlando ◽  
Velázquez-Martí Borja

The objective of this research is to present a review of the current technologies and pretreatments used in the fermentation of cow, pig and poultry manure. Pretreatment techniques were classified into physical, chemical, physicochemical, and biological groups. Various aspects of these different pretreatment approaches are discussed in this review. The advantages and disadvantages of its applicability are highlighted since the effects of pretreatments are complex and generally depend on the characteristics of the animal manure and the operational parameters. Biological pretreatments were shown to improve methane production from animal manure by 74%, chemical pretreatments by 45%, heat pretreatments by 41% and physical pretreatments by 30%. In general, pretreatments improve anaerobic digestion of the lignocellulosic content of animal manure and, therefore, increase methane yield.


2013 ◽  
Vol 788 ◽  
pp. 689-694
Author(s):  
Li Juan Zhang ◽  
Wei Dong Lin ◽  
Wu Di Zhang ◽  
Fang Yin ◽  
Xing Ling Zhao ◽  
...  

In order to study in the field of fermentation to produce biogas with Conyza canadensis, the anaerobic batch fermentation experiments were performed at 30°C. The results indicated that the net biogas production of the experimental group during total fermentation time of 36d was 3280ml. Further, it was calculated that the biogas production potential of Conyza canadensis was 354ml·g-1 TS or 413ml·g-1 VS.


Author(s):  
Fei Wang ◽  
Mengfu Pei ◽  
Ling Qiu ◽  
Yiqing Yao ◽  
Congguang Zhang ◽  
...  

Poultry manure is the main source of agricultural and rural non-point source pollution, and its effective disposal through anaerobic digestion (AD) is of great significance; meanwhile, the high nitrogen content of chicken manure makes it a typical feedstock for anaerobic digestion. The performance of chicken-manure-based AD at gradient organic loading rates (OLRs) in a continuous stirred tank reactor (CSTR) was investigated herein. The whole AD process was divided into five stages according to different OLRs, and it lasted for 150 days. The results showed that the biogas yield increased with increasing OLR, which was based on the volatile solids (VS), before reaching up to 11.5 g VS/(L·d), while the methane content was kept relatively stable and maintained at approximately 60%. However, when the VS was further increased to 11.5 g VS/(L·d), the total ammonia nitrogen (TAN), pH, and alkalinity (CaCO3) rose to 2560 mg·L−1, 8.2, and 15,000 mg·L−1, respectively, while the volumetric biogas production rate (VBPR), methane content, and VS removal efficiency decreased to 0.30 L·(L·d)−1, 45%, and 40%, respectively. Therefore, the AD performance immediately deteriorated and ammonia inhibition occurred. Further analysis demonstrated that the microbial biomass yield and concentrations dropped dramatically in this period. These results indicated that the AD stayed steady when the OLR was lower than 11.5 g VS/(L·d); this also provides valuable information for improving the efficiency and stability of AD of a nitrogen-rich substrate.


2015 ◽  
Vol 75 (1) ◽  
Author(s):  
Choo Wei Chun ◽  
Nina Farhana Mohd Jamaludin ◽  
Norazwina Zainol

A research was conducted on anaerobic digestion from poultry manure wastewater to produce biogas. This research was considered as a triumph to the concept of waste-to-wealth. The poultry manure collected was characterized and pre-treated to remove excessive ammonia-N which caused inhibition to the biogas production. Central Composite Design (CCD) with five replicates at centre points was used to investigate the simultaneous effect of the variables: agitation (110-130 rpm) and reaction time (2-4 days) on the biogas production. Then, the experiment was designed and analyzed using Design Expert V7.0 software by applying response surface methodology (RSM) concept.The biogas production performance was evaluated on the basis of biogas yield from initial Chemical Oxygen Demand (COD) and was found ranged from 0.49 to 4.37 mL/g COD. Quadratic model was well fitted (R-squared>0.80) with a confidence level higher than 95 %. The optimum biogas production condition was at agitation: 120 rpm and reaction time: 3.3 days. Under this condition, 4.45 mL/g COD of biogas yield was obtained. This counted for 5.82% error from predicted values.


2017 ◽  
Vol 35 (9) ◽  
pp. 967-977 ◽  
Author(s):  
Muzammil Anjum ◽  
Azeem Khalid ◽  
Samia Qadeer ◽  
Rashid Miandad

Catering waste and orange peel were co-digested using an anaerobic digestion process. Orange peel is difficult to degrade anaerobically due to the presence of antimicrobial agents such as limonene. The present study aimed to examine the feasibility of anaerobic co-digestion of catering waste with orange peel to provide the optimum nutrient balance with reduced inhibitory effects of orange peel. Batch experiments were conducted using catering waste as a potential substrate mixed in varying ratios (20–50%) with orange peel. Similar ratios were followed using green vegetable waste as co-substrate. The results showed that the highest organic matter degradation (49%) was achieved with co-digestion of catering waste and orange peel at a 50% mixing ratio (CF4). Similarly, the soluble chemical oxygen demand (sCOD) was increased by 51% and reached its maximum value (9040 mg l-1) due to conversion of organic matter from insoluble to soluble form. Biogas production was increased by 1.5 times in CF4 where accumulative biogas was 89.61 m3 t-1substrate compared with 57.35 m3 t-1substrate in the control after 80 days. The main reason behind the improved biogas production and degradation is the dilution of inhibitory factors (limonene), with subsequent provision of balanced nutrients in the co-digestion system. The tCOD of the final digestate was decreased by 79.9% in CF4, which was quite high as compared with 68.3% for the control. Overall, this study revealed that orange peel waste is a highly feasible co-substrate for anaerobic digestion with catering waste for enhanced biogas production.


2013 ◽  
Vol 763 ◽  
pp. 151-155 ◽  
Author(s):  
Li Juan Zhang ◽  
Wu Di Zhang ◽  
Fang Yin ◽  
Xing Ling Zhao ◽  
Jing Liu ◽  
...  

Biogas fermentation with Punica granatum peel was studied at 30°C by batch fermentation in this experiment. The results indicated that the net biogas production of the experimental group during total fermentation time of 35d was 1900mL. Further, we calculated that the biogas yield of Punica granatum peel was 264mL/g TS or 271mL/g VS.


Sign in / Sign up

Export Citation Format

Share Document