Alteration of N6-methyladenosine epitranscriptome profile in unilateral ureteral obstructive nephropathy

Epigenomics ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 1157-1173
Author(s):  
Xueyan Li ◽  
Xu Fan ◽  
Xiaoming Yin ◽  
Huajian Liu ◽  
Yi Yang

Aim: To reveal the alterations of N6-methyladenosine (m6A) epitranscriptome profile in kidney after unilateral ureteral obstruction in mice. Materials & methods: Total renal m6A and expressions of methyltransferases and demethylases were detected by colorimetric quantification method, real-time PCR and western blot, respectively. Methylated RNA immunoprecipitation sequencing was performed to map epitranscriptome-wide m6A profile. Results: Total m6A levels were time-dependent decreased within 1 week, with the lowest level detected at day 7. A total of 823 differentially methylated transcripts in 507 genes were identified. Specifically, demethylated mRNAs selectively acted on multiple pathways, including TGF-β and WNT. Conclusion: m6A modification has a functional importance in renal interstitial fibrosis during obstructive nephropathy and might be a promising therapeutic target.

1999 ◽  
Vol 103 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Robert J. Fern ◽  
Christine M. Yesko ◽  
Barbara A. Thornhill ◽  
Hyung-Suk Kim ◽  
Oliver Smithies ◽  
...  

2020 ◽  
Vol 48 (07) ◽  
pp. 1715-1729
Author(s):  
Yanhuan Feng ◽  
Fan Guo ◽  
Hongxia Mai ◽  
Jing Liu ◽  
Zijing Xia ◽  
...  

Pterostilbene (PTB) is a derivative of resveratrol present in grapes and blueberries. PTB is structurally similar to resveratrol, possessing properties such as being analgesic, anti-aging, antidiabetic, anti-inflammatory, anti-obesity, anti-oxidation, cholesterol-reductive, and neuroprotective. However, there have not been reports on the effect of PTB on macrophage-myofibroblast transition (MMT) induced fibrosis in kidney. In this study, we investigated the antifibrotic effects of PTB on the in vivo mouse unilateral ureteral obstruction (UUO) model and in vitro MMT cells. Kidneys subjected to UUO with PTB treatment were collected for the investigation of PTB mediating MMT derived renal interstitial fibrosis. We conducted kidney RNA-seq transcriptomes and TGF-[Formula: see text]1-induced bone marrow-derived macrophages assays to determine the mechanisms of PTB. We found that PTB treatment suppressed the interstitial fibrosis in UUO mice. PTB also attenuated the number of MMT cells in vivo and in vitro. The transcriptomic analysis showed that CXCL10 may play a central role in the process of PTB-treated renal fibrosis. The siRNA-mediated CXCL10 knockdown decreased the number of MMT cells in TGF-[Formula: see text]1-induced bone marrow-derived macrophages. Our results suggested that PTB attenuated renal interstitial fibrosis by mediating MMT by regulating transcriptional activity of CXCL10.


2009 ◽  
Vol 75 (11) ◽  
pp. 1145-1152 ◽  
Author(s):  
Robert L. Chevalier ◽  
Michael S. Forbes ◽  
Barbara A. Thornhill

2017 ◽  
Vol 46 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Xia Xiao ◽  
Chunyang Du ◽  
Zhe Yan ◽  
Yonghong Shi ◽  
Huijun Duan ◽  
...  

Background: Inflammation plays a crucial role in renal interstitial fibrosis, the pathway of chronic kidney diseases. Necroptosis is a novel form of regulated cell death, which plays a potential role in inflammation and renal diseases. The small molecule necrostatin-1 (Nec-1) is a specific inhibitor of necroptosis. This study was aimed at determining the role of necroptosis, RIP1/RIP3/mixed lineage kinase domain-like (MLKL) signaling pathway, in renal inflammation and interstitial fibrosis related to primitive tubulointerstitial injury. It was also aimed at evaluating the effect of Nec-1 in renal fibrosis induced by unilateral ureteral obstruction (UUO). Methods: Renal histology, immunohistochemistry, western blot, and real-time polymerase chain reaction were performed using UUO C57BL/6J mice model. Moreover, we tested whether Nec-1 was renal-protective in the interstitial fibrosis kidney. Mice were exposed to UUO and injected intraperitoneal with Nec-1 or vehicle. Results: The levels of RIP1/RIP3/MLKL protein and mRNA were increased in the obstructed kidneys 7 days after UUO; this was accompanied by changes in renal pathological lesions. Renal histological examination showed lesser renal damage in Nec-1-treated UUO mice. Renal inflammation, assessed by tumor necrosis factor-α, interleukin-1β, and monocyte chemotactic protein-1 was markedly attenuated by Nec-1. Furthermore, Nec-1 treatment also significantly reduced TGF-β and α-smooth muscle actin, indicating lesser renal interstitial fibrosis. Conclusion: These findings suggest that the participation of necroptosis in UUO is partly demonstrated. And necroptosis inhibition may have a potential role in the treatment of diseases with increased inflammatory response and interstitial fibrosis in renal.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Huixian Hou ◽  
Nozomi Yabuuchi ◽  
Nao Gunda ◽  
Rika Fujino ◽  
Yuya Hayashi ◽  
...  

Abstract Background and Aims Obstructive nephropathy is the result of functional or anatomic lesions located in the urinary tract, and renal interstitial fibrosis is a common finding associated with long-term nephropathy. Many factors are suggested to be involved in the pathogenesis of renal fibrosis, such as infiltration of macrophages, growth factors, oxidative stress and cytokines. Indoxyl sulfate (IS), a typical sulfate-conjugated uremic solute, accumulates markedly in serum and renal tissue of cisplatin- or ischemia/reperfusion-induced acute kidney injury model animals, thereby inducing generation of oxidative stress. However, the relationship between IS and obstructive nephropathy or renal fibrosis remains unclear. IS is produced in the liver by CYP2A6/2E1-dependent oxidative metabolism of dietary protein-derived indole, followed by sulfotransferase 1a1 (SULT1A1)-mediated sulfate conjugation of indoxyl. IS in the blood circulation is efficiently taken up by renal proximal tubules via basolateral membrane-localized organic anion transporters, OAT1 and OAT3, and excreted into urine via unidentified apical membrane-located transporter. Thus, we established SULT1A1 gene-deficient (SULTKO) mice and developed UUO mice to investigate the pathological role of IS in UUO-induced renal fibrosis. Method The left ureter of C57BL/6J mice (wild type (WT), 8 weeks-old) and SULTKO mice (8 weeks-old) were obstructed last for 2 weeks. IS concentration in serum and kidney was determined by LC-MS/MS. Changes in histology and interstitial fibrosis were examined with PAS staining and Sirius red staining, respectively. Quantitative PCR was applied for determining expression levels of col1a1 encoding the major component of type I collagen, fibronectin, plasminogen activator inhibitor (PAI)-1, the activator of plasminogen and hence fibrinolysis, pro-inflammatory cytokine interleukin 6 (IL-6), Wnt4 encoding one protein of Wnt and Sfrp5, a gene that codes for antagonist of Wnt pathway. Renal fibrosis also evaluated through the expression of alpha smooth muscle actin (SMA) by Western blotting. Results By UUO treatment, the concentration of IS in serum, kidney and liver were elevated, which were suppressed in SULTKO mice. Ureter dilation was obviously observed in the obstructed kidney of WT mice, which was slightly prevented in SULTKO mice with UUO. Sirius red staining revealed that severe collagen deposition was found in the interstitium of WT kidney with UUO, but it was partly prevented in the kidney of KO mice with UUO along with the decrease in IS accumulation. The high expression of SMA, col1a1 and fibronectin in the kidney of WT mice with UUO were significantly suppressed in the kidney of SULTKO mice, 2.3-fold, 1.4-fold and 2.3-fold, respectively, suggesting that renal fibrotic responses were ameliorated in SULTKO mice. The expression of PAI-1, which was upregulated in WT mice with UUO, was also suppressed (1.8-fold) in SULTKO mice with UUO. The elevated expression of IL-6 in the kidney of WT mice with UUO was inhibited (1.8-fold) in SULTKO mice with UUO, indicating the possibility that inflammation-related signalling pathway also participated in the IS-exacerbated renal fibrosis. The enhanced expression of Wnt4 in the kidney of WT mice with UUO was suppressed (1.8-fold) in SULTKO mice with UUO, and the gene of Sfrp5 exhibited a higher expression level (3.2-fold) in the kidney of SULTKO mice with UUO compared with WT UUO mice. Conclusion Sult1a1-deficient mice showed the suppressed accumulation of IS in the kidney with UUO. Renal IS accumulation during pathological progression of obstructive nephropathy could enhance interstitial fibrosis through the activation of Wnt signalling pathway. Hepatic SULT1A1 could be a therapeutic target for preventing the progression of renal interstitial fibrosis by suppressing IS production during obstructive nephropathy.


Sign in / Sign up

Export Citation Format

Share Document