scholarly journals An overview of nanomedicines for neuron targeting

Nanomedicine ◽  
2020 ◽  
Vol 15 (16) ◽  
pp. 1617-1636 ◽  
Author(s):  
Jesus Garcia-Chica ◽  
West Kristian D Paraiso ◽  
Shihori Tanabe ◽  
Dolors Serra ◽  
Laura Herrero ◽  
...  

Medical treatments of neuron-related disorders are limited due to the difficulty of targeting brain cells. Major drawbacks are the presence of the blood–brain barrier and the lack of specificity of the drugs for the diseased cells. Nanomedicine-based approaches provide promising opportunities for overcoming these limitations. Although many previous reviews are focused on brain targeting with nanomedicines in general, none of those are concerned explicitly on the neurons, while targeting neuronal cells in central nervous diseases is now one of the biggest challenges in nanomedicine and neuroscience. We review the most relevant advances in nanomedicine design and strategies for neuronal drug delivery that might successfully bridge the gap between laboratory and bedside treatment in neurology.

2020 ◽  
Vol 26 (37) ◽  
pp. 4721-4737 ◽  
Author(s):  
Bhumika Kumar ◽  
Mukesh Pandey ◽  
Faheem H. Pottoo ◽  
Faizana Fayaz ◽  
Anjali Sharma ◽  
...  

Parkinson’s disease is one of the most severe progressive neurodegenerative disorders, having a mortifying effect on the health of millions of people around the globe. The neural cells producing dopamine in the substantia nigra of the brain die out. This leads to symptoms like hypokinesia, rigidity, bradykinesia, and rest tremor. Parkinsonism cannot be cured, but the symptoms can be reduced with the intervention of medicinal drugs, surgical treatments, and physical therapies. Delivering drugs to the brain for treating Parkinson’s disease is very challenging. The blood-brain barrier acts as a highly selective semi-permeable barrier, which refrains the drug from reaching the brain. Conventional drug delivery systems used for Parkinson’s disease do not readily cross the blood barrier and further lead to several side-effects. Recent advancements in drug delivery technologies have facilitated drug delivery to the brain without flooding the bloodstream and by directly targeting the neurons. In the era of Nanotherapeutics, liposomes are an efficient drug delivery option for brain targeting. Liposomes facilitate the passage of drugs across the blood-brain barrier, enhances the efficacy of the drugs, and minimize the side effects related to it. The review aims at providing a broad updated view of the liposomes, which can be used for targeting Parkinson’s disease.


2006 ◽  
Vol 6 (9) ◽  
pp. 2712-2735 ◽  
Author(s):  
J. M. Koziara ◽  
P. R. Lockman ◽  
D. D. Allen ◽  
R. J. Mumper

The present report encompasses a thorough review of drug delivery to the brain with a particular focus on using drug carriers such as liposomes and nanoparticles. Challenges in brain drug delivery arise from the presence of one of the strictest barriers in vivo—the blood-brain barrier (BBB). This barrier exists at the level of endothelial cells of brain vasculature and its role is to maintain brain homeostasis. To better understand the principles of brain drug delivery, relevant knowledge of the blood-brain barrier anatomy and physiology is briefly reviewed. Several approaches to overcome the BBB have been reviewed including the use of carrier systems. In addition, strategies to enhance brain drug delivery by specific brain targeting are discussed.


Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 38
Author(s):  
Gizem Rüya Topal ◽  
Mária Mészáros ◽  
Gergő Porkoláb ◽  
Anikó Szecskó ◽  
Tamás Ferenc Polgár ◽  
...  

Pharmacological treatment of central nervous system (CNS) disorders is difficult, because the blood–brain barrier (BBB) restricts the penetration of many drugs into the brain. To solve this unmet therapeutic need, nanosized drug carriers are the focus of research efforts to develop drug delivery systems for the CNS. For the successful delivery of nanoparticles (NPs) to the brain, targeting ligands on their surface is necessary. Our research aim was to design a nanoscale drug delivery system for a more efficient transfer of donepezil, an anticholinergic drug in the therapy of Alzheimer’s disease across the BBB. Rhodamine B-labeled solid lipid nanoparticles with donepezil cargo were prepared and targeted with apolipoprotein E (ApoE), a ligand of BBB receptors. Nanoparticles were characterized by measurement of size, polydispersity index, zeta potential, thermal analysis, Fourier-transform infrared spectroscopy, in vitro release, and stability. Cytotoxicity of nanoparticles were investigated by metabolic assay and impedance-based cell analysis. ApoE-targeting increased the uptake of lipid nanoparticles in cultured brain endothelial cells and neurons. Furthermore, the permeability of ApoE-targeted nanoparticles across a co-culture model of the BBB was also elevated. Our data indicate that ApoE, which binds BBB receptors, can potentially be exploited for successful CNS targeting of solid lipid nanoparticles.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Mahmoud Gharbavi ◽  
Jafar Amani ◽  
Hamidreza Kheiri-Manjili ◽  
Hossein Danafar ◽  
Ali Sharafi

Niosomes (the nonionic surfactant vesicles), considered as novel drug delivery systems, can improve the solubility and stability of natural pharmaceutical molecules. They are established to provide targeting and controlled release of natural pharmaceutical compounds. Many factors can influence on niosome construction such as the preparation method, type and amount of surfactant, drug entrapment, temperature of lipids hydration, and the packing factor. The present review discusses about the most important features of niosomes such as their diverse structures, the different preparation approaches, characterization techniques, factors that affect their stability, their use by various routes of administration, their therapeutic applications in comparison with natural drugs, and specially the brain targeting with niosomes-ligand conjugation. It also provides recent data about the various types of ligand agents which make available active targeting drug delivery to the central neuron system. This system has an optimistic upcoming in pharmaceutical uses, mostly with the improving availability of innovative schemes to overcome blood-brain barrier and targeting the niosomes to the brain.


2019 ◽  
Vol 9 (6-s) ◽  
pp. 248-252
Author(s):  
Sachin Raosaheb Hangargekar ◽  
Pradeepkumar Mohanty ◽  
Ashish Jain

Brain is considered to be highly impermeable barrier, possessing different obstacles like presence of enzymes, presence of tight junctions that limit the entry for most of the drugs. The presence of these obstacles, possess a challenge for administration of the drugs. The conventional means of drug delivery in form of emulsions, fail to overcome these obstacles, and hence there is a need for newer drug delivery approach, that will cross these barriers of the brain. So, these nanoparticles can be an alternative to other conventional systems. They offer several advantages such as improved bioavailability and solubility that are composed of macromolecular materials like lipids and polymers possess low cytotoxicity, high drug loading capability, and good scalability these are the most effective colloidal carriers that have the ability to incorporate drugs into nanocarriers and used as drug targeting to specific area. Thus, this article will emphasise on properties of Blood Brain Barrier, strategies to overcome the blood–brain barrier, literature regarding the use of SLNs in various neurological disease states, production methods of SLN and its evaluation. Hence, these solid lipid formulations can be a new form and one of the promising approach for drug delivery system in future, that have remarkable possibility to cross the BBB. Keywords: Solid lipid nanoparticles, Nanocarriers, Blood–brain barrier


MedChemComm ◽  
2017 ◽  
Vol 8 (6) ◽  
pp. 1337-1345 ◽  
Author(s):  
Zeynep Gurturk ◽  
Aysen Tezcaner ◽  
Ali Deniz Dalgic ◽  
Seval Korkmaz ◽  
Dilek Keskin

Maltodextrin conjugated and glutathione co-loaded liposomes can improve brain targeting of levodopa by enhancing blood–brain barrier targeting and transport.


2021 ◽  
Vol 10 ◽  
Author(s):  
Mohini Singh ◽  
Bhaskar Mazumder

Background: The brain is a vital and composite organ. By nature, the innate make-up of the brain is such that in anatomical parlance, it is highly protected by the “Blood-Brain Barrier”, which is a nexus of capillary endothelial cells, basement membrane, neuroglial membrane and glialpodocytes. The same barrier, which protects and isolates the interstitial fluid of the brain from capillary circulation, also restricts the therapeutic intervention. Many standing pharmaceutical formulations are ineffective in the treatment of inimical brain ailments because of the inability of the API to surpass and subsist inside the Blood Brain Barrier. Objective: This is an integrated review that emphasizes on the recent advancements in brain-targeted drug delivery utilizing nanodiamonds (NDs) as a carrier of therapeutic agents. NDs are a novel nanoparticulate drug delivery system, having carbon moieties as their building blocks and their surface tenability is remarkable. These neoteric carbon-based carriers have exceptional, mechanical, electrical, chemical, optical, and biological properties, which can be further rationally modified and augmented. Conclusion: NDs could be the next“revolution ”in the field of nanoscience for the treatment of neurodegenerative disorders, brain tumors, and other pernicious brain ailments. What sets them apart from other nanocarriers is their versatile properties like diverse size range and surface modification potential, which makes them efficient enough to move across certain biological barriers and offer a plethora of brain targeting and bioimaging abilities. Lay Summary: The blood-brain barrier (BBB) poses a major hurdle in the way of treating many serious brain ailments. A range of nanoparticle based drug delivering systems have been formulated, including solid lipid nanoparticles, liposomes, dendrimers, nanogels, polymeric NPs, metallic NPs (gold, platinum, andironoxide) and diamondoids (carbonnanotubes). Despite this development, only a few of these formulations have shown the ability to cross the BBB. Nanodiamonds, because of their small size, shape, and surface characteristics, have a potential in moving beyond the diverse and intricate BBB, and offer a plethora of brain targeting capabilities.


2020 ◽  
Vol 26 (13) ◽  
pp. 1448-1465 ◽  
Author(s):  
Jozef Hanes ◽  
Eva Dobakova ◽  
Petra Majerova

Tauopathies are neurodegenerative disorders characterized by the deposition of abnormal tau protein in the brain. The application of potentially effective therapeutics for their successful treatment is hampered by the presence of a naturally occurring brain protection layer called the blood-brain barrier (BBB). BBB represents one of the biggest challenges in the development of therapeutics for central nervous system (CNS) disorders, where sufficient BBB penetration is inevitable. BBB is a heavily restricting barrier regulating the movement of molecules, ions, and cells between the blood and the CNS to secure proper neuronal function and protect the CNS from dangerous substances and processes. Yet, these natural functions possessed by BBB represent a great hurdle for brain drug delivery. This review is concentrated on summarizing the available methods and approaches for effective therapeutics’ delivery through the BBB to treat neurodegenerative disorders with a focus on tauopathies. It describes the traditional approaches but also new nanotechnology strategies emerging with advanced medical techniques. Their limitations and benefits are discussed.


Sign in / Sign up

Export Citation Format

Share Document