scholarly journals SLC15 family of peptide transporters in GtoPdb v.2021.3

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
David T. Thwaites ◽  
Tiziano Verri

The Solute Carrier 15 (SLC15) family of peptide transporters, alias H+-coupled oligopeptide cotransporter family, is a group of membrane transporters known for their key role in the cellular uptake of di- and tripeptides (di/tripeptides). Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from overall dietary protein digestion, SLC15A2 (PEPT2) mainly allows renal tubular reuptake of di/tripeptides from ultrafiltration and brain-to-blood efflux of di/tripeptides in the choroid plexus, SLC15A3 (PHT2) and SLC15A4 (PHT1) interact with both di/tripeptides and histidine, e.g. in certain immune cells, and SLC15A5 has unknown physiological function. In addition, the SLC15 family of peptide transporters variably interacts with a very large number of peptidomimetics and peptide-like drugs. It is conceivable, based on the currently acknowledged structural and functional differences, to divide the SLC15 family of peptide transporters into two subfamilies [3].

2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
David T. Thwaites ◽  
Tiziano Verri

The Solute Carrier 15 (SLC15) family of peptide transporters, alias H+-coupled oligopeptide cotransporter family, is a group of membrane transporters known for their key role in the cellular uptake of di- and tripeptides (di/tripeptides). Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from overall dietary protein digestion, SLC15A2 (PEPT2) mainly allows renal tubular reuptake of di/tripeptides from ultrafiltration and brain-to-blood efflux of di/tripeptides in the choroid plexus, SLC15A3 (PHT2) and SLC15A4 (PHT1) interact with both di/tripeptides and histidine, e.g. in certain immune cells, and SLC15A5 has unknown physiological function. In addition, the SLC15 family of peptide transporters variably interacts with a very large number of peptidomimetics and peptide-like drugs. It is conceivable, based on the currently acknowledged structural and functional differences, to divide the SLC15 family of peptide transporters into two subfamilies.


2015 ◽  
Vol 59 (12) ◽  
pp. 7489-7496 ◽  
Author(s):  
Bo Yun ◽  
Mohammad A. K. Azad ◽  
Cameron J. Nowell ◽  
Roger L. Nation ◽  
Philip E. Thompson ◽  
...  

ABSTRACTPolymyxins are cyclic lipopeptide antibiotics that serve as a last line of defense against Gram-negative bacterial superbugs. However, the extensive accumulation of polymyxins in renal tubular cells can lead to nephrotoxicity, which is the major dose-limiting factor in clinical use. In order to gain further insights into the mechanism of polymyxin-induced nephrotoxicity, we have rationally designed novel fluorescent polymyxin probes to examine the localization of polymyxins in rat renal tubular (NRK-52E) cells. Our design strategy focused on incorporating a dansyl fluorophore at the hydrophobic centers of the polymyxin core structure. To this end, four novel regioselectively labeled monodansylated polymyxin B probes (MIPS-9541, MIPS-9542, MIPS-9543, and MIPS-9544) were designed, synthesized, and screened for their antimicrobial activities and apoptotic effects against rat kidney proximal tubular cells. On the basis of the assessment of antimicrobial activities, cellular uptake, and apoptotic effects on renal tubular cells, incorporation of a dansyl fluorophore at either position 6 or 7 (MIPS-9543 and MIPS-9544, respectively) of the polymyxin core structure appears to be an appropriate strategy for generating representative fluorescent polymyxin probes to be utilized in intracellular imaging and mechanistic studies. Furthermore, confocal imaging experiments utilizing these probes showed evidence of partial colocalization of the polymyxins with both the endoplasmic reticulum and mitochondria in rat renal tubular cells. Our results highlight the value of these new fluorescent polymyxin probes and provide further insights into the mechanism of polymyxin-induced nephrotoxicity.


2014 ◽  
Vol 99 (6) ◽  
pp. 2250-2258 ◽  
Author(s):  
Stefan H. M. Gorissen ◽  
Nicholas A. Burd ◽  
Henrike M. Hamer ◽  
Annemie P. Gijsen ◽  
Bart B. Groen ◽  
...  

2020 ◽  
Vol 150 (8) ◽  
pp. 2041-2050 ◽  
Author(s):  
Stefan H M Gorissen ◽  
Jorn Trommelen ◽  
Imre W K Kouw ◽  
Andrew M Holwerda ◽  
Bart Pennings ◽  
...  

ABSTRACT Background Dietary protein ingestion stimulates muscle protein synthesis by providing amino acids to the muscle. The magnitude and duration of the postprandial increase in muscle protein synthesis rates are largely determined by dietary protein digestion and amino acid absorption kinetics. Objective We assessed the impact of protein type, protein dose, and age on dietary protein digestion and amino acid absorption kinetics in vivo in humans. Methods We included data from 18 randomized controlled trials with a total of 602 participants [age: 53 ± 23 y; BMI (kg/m2): 24.8 ± 3.3] who consumed various quantities of intrinsically l-[1-13C]-phenylalanine–labeled whey (n = 137), casein (n = 393), or milk (n = 72) protein and received intravenous infusions of l-[ring-2H5]-phenylalanine, which allowed us to assess protein digestion and phenylalanine absorption kinetics and the postprandial release of dietary protein–derived phenylalanine into the circulation. The effect of aging on these processes was assessed in a subset of 82 young (aged 22 ± 3 y) and 83 older (aged 71 ± 5 y) individuals. Results A total of 50% ± 14% of dietary protein–derived phenylalanine appeared in the circulation over a 5-h postprandial period. Casein ingestion resulted in a smaller (45% ± 11%), whey protein ingestion in an intermediate (57% ± 10%), and milk protein ingestion in a greater (65% ± 13%) fraction of dietary protein–derived phenylalanine appearing in the circulation (P < 0.001). The postprandial availability of dietary protein–derived phenylalanine in the circulation increased with the ingestion of greater protein doses (P < 0.05). Protein digestion and phenylalanine absorption kinetics were attenuated in older when compared with young individuals, with 45% ± 10% vs. 51% ± 14% of dietary protein–derived phenylalanine appearing in the circulation, respectively (P = 0.001). Conclusions Protein type, protein dose, and age modulate dietary protein digestion and amino acid absorption kinetics and subsequent postprandial plasma amino acid availability in vivo in humans. These trials were registered at clinicaltrials.gov as NCT00557388, NCT00936039, NCT00991523, NCT01317511, NCT01473576, NCT01576848, NCT01578590, NCT01615276, NCT01680146, NCT01820975, NCT01986842, and NCT02596542, and at http://www.trialregister.nl as NTR3638, NTR3885, NTR4060, NTR4429, and NTR4492.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Enrico Girardi ◽  
Gennaro Agrimi ◽  
Ulrich Goldmann ◽  
Giuseppe Fiume ◽  
Sabrina Lindinger ◽  
...  

AbstractAbout a thousand genes in the human genome encode for membrane transporters. Among these, several solute carrier proteins (SLCs), representing the largest group of transporters, are still orphan and lack functional characterization. We reasoned that assessing genetic interactions among SLCs may be an efficient way to obtain functional information allowing their deorphanization. Here we describe a network of strong genetic interactions indicating a contribution to mitochondrial respiration and redox metabolism for SLC25A51/MCART1, an uncharacterized member of the SLC25 family of transporters. Through a combination of metabolomics, genomics and genetics approaches, we demonstrate a role for SLC25A51 as enabler of mitochondrial import of NAD, showcasing the potential of genetic interaction-driven functional gene deorphanization.


Author(s):  
Sanghee Park ◽  
David D. Church ◽  
Carlene Starck ◽  
Scott E. Schutzler ◽  
Gohar Azhar ◽  
...  

Abstract Purpose The purpose of the study was to determine if an actinidin protease aids gastric digestion and the protein anabolic response to dietary protein. Methods Hayward green kiwifruit (containing an actinidin protease) and Hort 16A gold kiwifruit (devoid of actinidin protease) were given in conjunction with a beef meal to healthy older subjects. Twelve healthy older males (N = 6) and females (N = 6) were studied with a randomized, double-blinded, crossover design to assess muscle and whole-body protein metabolism before and after ingestion of kiwifruit and 100 g of ground beef. Subjects consumed 2 of each variety of kiwifruit daily for 14 d prior to each metabolic study, and again during each study with beef intake. Results Hayward green kiwifruit consumption with beef resulted in a more rapid increase in peripheral plasma essential amino acid concentrations. There were significant time by kiwifruit intake interactions for plasma concentrations of EAAs, branched chain amino acids (BCAAs), and leucine (P < 0.01). However, there was no difference in the total amount of EAAs absorbed. As a result, there were no differences between kiwifruit in any of the measured parameters of protein kinetics. Conclusion Consumption of Hayward green kiwifruit, with a beef meal facilitates protein digestion and absorption of the constituent amino acids as compared to Hort 16A gold kiwifruit. Clinical trial NCT04356573, April 21, 2020 “retrospectively registered”.


1989 ◽  
Vol 119 (8) ◽  
pp. 1093-1099 ◽  
Author(s):  
Gary L. Asche ◽  
Austin J. Lewis ◽  
Ernest R. Peo,

Author(s):  
Björn Hultberg

AbstractDespite the growing evidence that plasma homocysteine is a cardiovascular risk factor, the mechanism behind the vascular injuries is still unknown. Studies of the cellular uptake systems for homocysteine are scarce, but membrane transporters of cyst(e)ine seem to be involved. In the present study the cellular uptake of extracellular homocysteine in HeLa and hepatoma cell lines is investigated by using several different transport inhibitors for cellular uptake of cyst(e)ine. It is shown that systems A and X


Nanomedicine ◽  
2019 ◽  
Vol 14 (17) ◽  
pp. 2379-2390 ◽  
Author(s):  
Maria Antonietta Rizzuto ◽  
Lucia Salvioni ◽  
Rany Rotem ◽  
Miriam Colombo ◽  
Ivan Zanoni ◽  
...  

The current treatments for chronic inflammatory diseases cause severe side effects due to nonspecific drug accumulation. Nanotechnology opens the way to new therapeutic strategies that exploit the ability of immune cells, and especially of phagocytes, to internalize nanoparticles. The cellular uptake of nanoparticles requires specific interactions and is affected by the chemical and physical properties of the carriers. Therefore, optimizing these properties is crucial for designing nanodrugs for immunotherapy. In perspective, we discuss the nanoparticle-based approaches that have been proposed to induce tolerance in autoimmune disorders and lessen the symptoms of inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document