scholarly journals Available Simplified Semi-empirical Correlation to Predict Hollow Spray Cone Angle for Practical Pressure Swirl Atomizers with Viscous liquid

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Sun Lei ◽  
Tian Deng ◽  
Huang Yong ◽  
Shaolin Wang ◽  
Zhilin Liu ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Tao Zhang ◽  
Bo Dong ◽  
Xun Zhou ◽  
Linan Guan ◽  
Weizhong Li ◽  
...  

Partial replacement of kerosene by ethanol in a gas turbine is regarded as a good way to improve the spray quality and reduce the fossil energy consumption. The present work is aimed at studying the spray characteristics of kerosene-ethanol blends discharging from a pressure-swirl nozzle. The spray cone angle, discharge coefficient, breakup length, and velocity distribution are obtained by particle image velocimetry, while droplet size is acquired by particle/droplet imaging analysis. Kerosene, E10 (10% ethanol, 90% kerosene), E20 (20% ethanol, 80% kerosene), and E30 (30% ethanol, 70% kerosene) have been considered under the injection pressure of 0.1–1 MPa. The results show that as injection pressure is increased, the discharge coefficient and breakup length decrease, while the spray cone angle, drop size, and spray velocity increase. Meanwhile, the drop size decreases and the spray velocity increases with ethanol concentration when the injection pressure is lower than 0.8 MPa. However, the spray characteristics are not affected obviously by the ethanol concentration when the injection pressure exceeds 0.8 MPa. A relation to breakup length for kerosene-ethanol blends is obtained. The findings demonstrate that the adding of ethanol into kerosene can promote atomization performance.


2021 ◽  
Vol 20 (2) ◽  
pp. 19-35
Author(s):  
N. I. Gurakov ◽  
I. A. Zubrilin ◽  
M. Hernandez Morales ◽  
D. V. Yakushkin ◽  
A. A. Didenko ◽  
...  

The paper presents the results of studying the flow characteristics of liquid fuel in pressure jet atomizers of small-sized gas turbine engines with nozzle diameters of 0.4-0.6 mm for various operating and design parameters. The study was carried out using experimental measurements, semi-empirical correlations and CFD (computational fluid dynamics) methods. The Euler approach, the volume- of- fluid (VOF) method, was used to model multiphase flows in CFD simulations. Good agreement was obtained between experimental and predicted data on the fuel coefficient and the primary spray cone angle at the nozzle outlet. Besides, the assessment of the applicability of semi-empirical techniques for the nozzle configurations under consideration is given. In the future, the flow characteristics in question (the nozzle flow rate, the fuel film thickness, and the primary spray cone angle) can be used to determine the mean diameter of the droplets (SMD) required to fully determine the boundary conditions of fuel injection when modeling combustion processes in combustion chambers of small-sized gas turbine engines.


Author(s):  
Jiawei Bian ◽  
Dalin Zhang ◽  
Rulei Sun ◽  
Yingwei Wu ◽  
Wenxi Tian ◽  
...  

Spraying system plays an important role in the safety of PWR. To ensure homogeneous spraying of the containment, the layout of nozzles on the spray header was taken into consideration in design. In this paper, an experimental study was conducted to obtain spray characteristics data, including spray cone angle and 2-D spray flux distribution for the purpose of achieving optimal design of the spraying system. According to the specialty of the spray field involved, a testing loop with four pressure-swirl nozzles was established for the study. Spray cone angles were obtained by photograph method. The volume flux distribution was measured by collecting the spray droplet along the cross-section diameters. Based on the experimental data, typical spray flux distributions were obtained. The flux distribution results were used to build 3-D coverage models. Then these models were used to calculate the overall spray coverage in the containment. The present work introduces the experimental study of spray behavior of a typical pressure-swirl nozzle in containment and the method to evaluate spray coverage through building 3-D spray flux distribution models. The work is expected to be helpful for the optimization design of spraying systems.


Author(s):  
X. F. Wang ◽  
A. H. Lefebvre

The spray characteristics of six simplex atomizers are examined in a pressure vessel using a standard light diffraction technique. Attention is focused on the effects of liquid properties, nozzle flow number, spray cone angle, and ambient air pressure on mean drop size and drop-size distribution. For all nozzles and all liquids it is found that continuous increase in air pressure above the normal atmospheric value causes the SMD to first increase up to a maximum value and then decline. An explanation for this characteristic is provided in terms of the measurement technique employed and the various competing influences on the overall atomization process. The basic effect of an increase in air pressure is to improve atomization, but this trend is opposed by contraction of the spray angle which reduces the relative velocity between the drops and the surrounding air, and also increases the possibility of droplet coalescence.


1992 ◽  
Vol 114 (1) ◽  
pp. 97-103 ◽  
Author(s):  
S. K. Chen ◽  
A. H. Lefebvre ◽  
J. Rollbuhler

The spray cone angles produced by several simplex pressure-swirl nozzles are examined using three liquids whose viscosities range from 0.001 to 0.012 kg/ms (1 to 12 cp). Measurements of both the visible spray cone angle and the effective spray cone angle are carried out over wide ranges of injection pressure and for five different values of the discharge orifice length/diameter ratio. The influence of the number of swirl chamber feed slots on spray cone angle is also examined. The results show that the spray cone angle widens with increase in injection pressure but is reduced by increases in liquid viscosity and/or discharge orifice length/diameter ratio. Variation in the number of swirl chamber feed slots between one and three has little effect on the effective spray cone angle.


1990 ◽  
Vol 112 (4) ◽  
pp. 579-584 ◽  
Author(s):  
S. K. Chen ◽  
A. H. Lefebvre ◽  
J. Rollbuhler

The spray characteristics of several different simplex pressure-swirl nozzles are examined using water as the working fluid. Measurements of mean drop size, dropsize distribution, effective spray cone angle, and circumferential liquid distribution are carried out over wide ranges of injection pressure. Eight different nozzles are employed in order to achieve a wide variation in the length/diameter ratio of the final discharge orifice. Generally, it is found that an increase in discharge orifice length/diameter ratio (lo/do) increases the mean drop size in the spray and reduces the spray cone angle. The circumferential liquid distribution is most uniform when lo/do=2. If lo/do is raised above or lowered below this optimum value, the circumferential uniformity of the liquid distribution is impaired. The observed effects of lo/do on spray characteristics are generally the same regardless of whether the change in lo/do is accomplished by varying lo or do.


2015 ◽  
Vol 798 ◽  
pp. 190-194
Author(s):  
Mehmet Kahraman ◽  
Guven Komurgoz ◽  
Ibrahim Ozkol

Atomization quality of liquids has a great importance on the performance of combustion engines. In this study the internal flow phenome of pressure swirl atomizer is investigated by using numerical method. The design of swirl atomizer is performed based on the requested atomizer characteristics which are sauter mean diamer (SMD), spray cone angle and break up length. Prediction and understanding of liquid film dynamics in the atomizer inside are the fundamental ways to explore atomizer performance. The purpose of this study is to estimate the air core size and film thickness in pressure swirl atomizer by setting single phase numeric computations. This article concludes that the CFD validated swirl atomizer design can be achieved with the lower computational cost using stream function methodology.


Sign in / Sign up

Export Citation Format

Share Document