scholarly journals SIMULATION OF FRACTURE USING A MESH-DEPENDENT FRACTURE CRITERION IN THE DISCRETE ELEMENT METHOD

2018 ◽  
Vol 16 (1) ◽  
pp. 41 ◽  
Author(s):  
Andrey Dimaki ◽  
Evgeny Shilko ◽  
Sergey Psakhie ◽  
Valentin Popov

Recently, Pohrt and Popov have shown that for simulation of adhesive contacts a mesh dependent detachment criterion must be used to obtain the mesh-independent macroscopic behavior of the system. The same principle should be also applicable for the simulation of fracture processes in any method using finite discretization. In particular, in the Discrete Element Methods (DEM) the detachment criterion of particles should depend on the particle size. In the present paper, we analyze how the mesh dependent detachment criterion has to be introduced to guarantee the macroscopic invariance of mechanical behavior of a material. We find that it is possible to formulate the criterion which describes fracture both in tensile and shear experiments correctly.

2021 ◽  
Vol 11 (6) ◽  
pp. 2484
Author(s):  
Zhou Lei ◽  
Esteban Rougier ◽  
Earl E. Knight ◽  
Mengyan Zang ◽  
Antonio Munjiza

A driving technical concern for the automobile industry is their assurance that developed windshield products meet Federal safety standards. Besides conducting innumerable glass breakage experiments, product developers also have the option of utilizing numerical approaches that can provide further insight into glass impact breakage, fracture, and fragmentation. The combined finite-discrete element method (FDEM) is one such tool and was used in this study to investigate 3D impact glass fracture processes. To enable this analysis, a generalized traction-separation model, which defines the constitutive relationship between the traction and separation in FDEM cohesive zone models, was introduced. The mechanical responses of a laminated glass and a glass plate under impact were then analyzed. For laminated glass, an impact fracture process was investigated and results were compared against corresponding experiments. Correspondingly, two glass plate impact fracture patterns, i.e., concentric fractures and radial fractures, were simulated. The results show that for both cases, FDEM simulated fracture processes and fracture patterns are in good agreement with the experimental observations. The work demonstrates that FDEM is an effective tool for modeling of fracture and fragmentation in glass.


2008 ◽  
Vol 48 (12) ◽  
pp. 1696-1703 ◽  
Author(s):  
Hiroshi Mio ◽  
Satoshi Komatsuki ◽  
Masatoshi Akashi ◽  
Atsuko Shimosaka ◽  
Yoshiyuki Shirakawa ◽  
...  

2021 ◽  
Vol 249 ◽  
pp. 07010
Author(s):  
Wei Pin Goh ◽  
Mojtaba Ghadiri

Milling is an important process for tailoring the particle size distribution for enhanced attributes, such as dissolution, content uniformity, tableting, etc., especially for active pharmaceutical ingredients and excipients in pharmaceutical industries. Milling performance of particulate solids depends on the equipment operating conditions (geometry, process conditions and input energy etc.) as well as material properties (particle size, shape, and mechanical properties, such as Young’s modulus, hardness and fracture toughness). In this paper the particle dynamics in a pin mill is analysed using Discrete Element Method (DEM), combined with a novel approach for assessing particle breakability by single particle impact testing. A sensitivity analysis is carried out addressing the effect of the milling conditions (rotational speed and feed particle flow rate), accounting for feed mechanical properties on the breakage behaviour of the particles. Particle collision energy spectra are calculated and shown to have a distribution with the upper tail end being close to the maximum energy associated with the collision with the rings. Breakage is primarily due to collisions with the rings, except for large particles that are comparable in size with the gap between the rings, nipping is also a contributory breakage mechanism.


Sign in / Sign up

Export Citation Format

Share Document