scholarly journals THE NEW WEIGHTED INVERSE RAYLEIGH DISTRIBUTION AND ITS APPLICATION

Author(s):  
Demet Aydın

In this study, a new weighted version of the inverse Rayleigh distribution based on two different weight functions is introduced. Some statistical and reliability properties of the introduced distribution including the moments, moment generating function, entropy measures (i.e., Shannon and R´enyi) and survival and hazard rate functions are derived. The maximum likelihood estimators of the unknown parameters cannot be obtained in explicit forms. So, a numerical method has been required to compute maximum likelihood estimates. Finally, the daily mean wind speed data set has been analysed to show the usability of the new weighted inverse Rayleigh distribution.

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Dinesh Barot ◽  
Manhar Patel

The comparison of empirical Bayes and generalized maximum likelihood estimates of reliability performances is made in terms of risk efficiencies when the data are progressively Type II censored from Rayleigh distribution. The empirical Bayes estimates are obtained using an asymmetric loss function. The risk functions of the estimates and risk efficiencies are obtained under this loss function. A real data set is presented to illustrate the proposed comparison method, and the performance of the estimates is examined and compared in terms of risk efficiencies by means of Monte Carlo simulations. The simulation results indicate that the proposed empirical Bayes estimates are more preferable than the generalized maximum likelihood estimates.


2017 ◽  
Vol 13 (3) ◽  
pp. 7205-7218
Author(s):  
Shimaa A. Dessoky ◽  
Ahmed M. T. Abd El-Bar

This paper deals with a new generalization of the Weibull distribution. This distribution is called exponentiated exponentiated exponential-Weibull (EEE-W) distribution. Various structural properties of the new probabilistic model are considered, such as hazard rate function, moments, moment generating function, quantile function, skewness, kurtosis, Shannon entropy and Rényi entropy. The maximum likelihood estimates of its unknown parameters are obtained. Finally, areal data set is analyzed and it observed that the present distribution can provide a better fit than some other known distributions.


2016 ◽  
Vol 5 (4) ◽  
pp. 1
Author(s):  
Bander Al-Zahrani

The paper gives a description of estimation for the reliability function of weighted Weibull distribution. The maximum likelihood estimators for the unknown parameters are obtained. Nonparametric methods such as empirical method, kernel density estimator and a modified shrinkage estimator are provided. The Markov chain Monte Carlo method is used to compute the Bayes estimators assuming gamma and Jeffrey priors. The performance of the maximum likelihood, nonparametric methods and Bayesian estimators is assessed through a real data set.


Author(s):  
Zubair Ahmad Ahmad ◽  
Eisa Mahmoudi Mahmoudi ◽  
G. G. Hamedani

Actuaries are often in search of nding an adequate loss model in the scenario of actuarial and financial risk management problems. In this work, we propose a new approach to obtain a new class of loss distributions. A special sub-model of the proposed family, called the Weibull-loss model isconsidered in detail. Some mathematical properties are derived and maximum likelihood estimates of the model parameters are obtained. Certain characterizations of the proposed family are also provided. A simulation study is done to evaluate the performance of the maximum likelihood estimators. Finally, an application of the proposed model to the vehicle insurance loss data set is presented.


1998 ◽  
Vol 28 (9) ◽  
pp. 1286-1294 ◽  
Author(s):  
F Soria ◽  
F Basurco ◽  
G Toval ◽  
L Silió ◽  
M C Rodriguez ◽  
...  

A Bayesian procedure coupled with Gibbs sampling was implemented to obtain inferences about genetic parameters and breeding values for height and diameter of 7-year-old Eucalyptus globulus Labill. is described. The data set consisted of 21 708 trees from 260 open-pollinated families taken from 10 different Australian provenances, from one Spanish population, and from two clones. The trees are distributed over eight sites in the south of Spain, with 20 blocks per site. Data were corrected for heterogeneity of phenotypic variances between blocks. In the analysis, a self-pollination rate of 30% for the open-pollinated families is assumed in the relationship matrix. The posterior means (and standard deviations) of the heritabilities of height and diameter and the genetic and phenotypic correlation were 0.217 (0.014), 0.128 (0.084), 0.768 (0.028), and 0.799 (0.003). Results from the standard restricted maximum likelihood method were 0.173, 0.113, 0.759, and 0.798, respectively. Most of the discrepancy in heritability estimates from both methods can be attributed to the adjustement of residual maximum likelihood estimates to the assumed self-pollination rate, which ignores the presence of clones in the trial. The effect of the method of prediction of breeding values (best linear unbiased prediction or Bayesian techniques) on the genetic superiority of the selected trees was not important. Differences in breeding value among provenances and among families were evidenced for both traits.


1985 ◽  
Vol 40 (2) ◽  
pp. 351-358 ◽  
Author(s):  
A. E. Carden ◽  
W. G. Hill ◽  
A. J. Webb

ABSTRACTThe effects of susceptibility to halothane anaesthesia on litter productivity were investigated by comparing susceptible and normal females in two sets of data. The first comprised 206 litters from the first five generations of Pietrain/Hampshire synthetic lines selected for and against halothane susceptibility. Susceptible and normal females were mated to boars of their own type. The second data set consisted of 93 litters from the same susceptible and normal females mated to normal boars. Compared with normal contemporaries, litter sizes of susceptible females were reduced by 1·16 (s.e. 0·40) piglets at birth, and 1-76 (s.e. 0·41) at weaning (ca. 1 weeks). Maximum likelihood estimates of the proportions of piglet deaths from birth to weaning as a trait of susceptible v. normal dams were 0·32 v. 014 (P < 0·001). There were no significant differences in piglet weights or perinatal mortality, and no apparent influence of piglet genotype on any trait. The lower litter size of susceptible females at weaning appeared to result from reductions in both numbers born and survival to weaning. The study bears out previous reports of a reduction in litter productivity due to the halothane gene. However, the present differences could have arisen largely from random genetic differentiation between lines, or linkage disequilibrium in the synthetic foundation population.


2021 ◽  
Vol 50 (5) ◽  
pp. 38-51
Author(s):  
Mohammad Kazemi ◽  
Mina Azizpoor

The hybrid censoring is a mixture of type-I and type-II censoring schemes. This paper presents the statistical inferences of the inverse Weibull distribution parameters when the data are type-I hybrid censored. First, we consider the maximum likelihood estimates of the unknown parameters. It is observed that the maximum likelihood estimates can not be obtained in closed form. We further obtain the Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters under the assumption of independent gamma priors using the importance sampling procedure. We also compute the approximate Bayes estimates using Lindley's approximation technique. The performance of the Bayes estimates have been compared with maximum likelihood estimates through the Monte Carlo Markov chain techniques. Finally, a real data set have been analysed for illustration purpose.


Author(s):  
Uchenna U. Uwadi ◽  
Elebe E. Nwaezza

In this study, we proposed a new generalised transmuted inverse exponential distribution with three parameters and have transmuted inverse exponential and inverse exponential distributions as sub models. The hazard function of the distribution is nonmonotonic, unimodal and inverted bathtub shaped making it suitable for modelling lifetime data. We derived the moment, moment generating function, quantile function, maximum likelihood estimates of the parameters, Renyi entropy and order statistics of the distribution. A real life data set is used to illustrate the usefulness of the proposed model.     


2021 ◽  
Author(s):  
Petya Kindalova ◽  
Ioannis Kosmidis ◽  
Thomas E. Nichols

AbstractObjectivesWhite matter lesions are a very common finding on MRI in older adults and their presence increases the risk of stroke and dementia. Accurate and computationally efficient modelling methods are necessary to map the association of lesion incidence with risk factors, such as hypertension. However, there is no consensus in the brain mapping literature whether a voxel-wise modelling approach is better for binary lesion data than a more computationally intensive spatial modelling approach that accounts for voxel dependence.MethodsWe review three regression approaches for modelling binary lesion masks including massunivariate probit regression modelling with either maximum likelihood estimates, or mean bias-reduced estimates, and spatial Bayesian modelling, where the regression coefficients have a conditional autoregressive model prior to account for local spatial dependence. We design a novel simulation framework of artificial lesion maps to compare the three alternative lesion mapping methods. The age effect on lesion probability estimated from a reference data set (13,680 individuals from the UK Biobank) is used to simulate a realistic voxel-wise distribution of lesions across age. To mimic the real features of lesion masks, we suggest matching brain lesion summaries (total lesion volume, average lesion size and lesion count) across the reference data set and the simulated data sets. Thus, we allow for a fair comparison between the modelling approaches, under a realistic simulation setting.ResultsOur findings suggest that bias-reduced estimates for voxel-wise binary-response generalized linear models (GLMs) overcome the drawbacks of infinite and biased maximum likelihood estimates and scale well for large data sets because voxel-wise estimation can be performed in parallel across voxels. Contrary to the assumption of spatial dependence being key in lesion mapping, our results show that voxel-wise bias-reduction and spatial modelling result in largely similar estimates.ConclusionBias-reduced estimates for voxel-wise GLMs are not only accurate but also computationally efficient, which will become increasingly important as more biobank-scale neuroimaging data sets become available.


Author(s):  
Mustapha Muhammad ◽  
Isyaku Muhammad ◽  
Aisha Muhammad Yaya

In this paper, a new lifetime model called Kumaraswamy exponentiated U-quadratic (KwEUq) distribution is proposed. Several mathematical and statistical properties are derived and studied such as the explicit form of the quantile function, moments, moment generating function, order statistics, probability weighted moments, Shannon entropy and Renyi entropy. We also found that the usual maximum likelihood estimates (MLEs) fail to hold for the KwEUq distribution. Two alternative methods are suggested for the parameter estimation of the KwEUq, the alternative maximum likelihood estimation (AMLE) and modified maximum likelihood estimation (MMLE). Simulation studies were conducted to assess the finite sample behavior of the AMLEs and MMLEs. Finally, we provide application of the KwEUq for illustration purposes.


Sign in / Sign up

Export Citation Format

Share Document