scholarly journals Bio-management of Cucumber Wilt Complex Caused by Root-knot Nematode, Meloidogyne incognita and Fusarium oxysporum f. sp. cucumerinum in Polyhouse under Protected Cultivation

2017 ◽  
Vol 11 (4) ◽  
pp. 1909-1917
Author(s):  
Jaydeep Patil ◽  
SR Goel ◽  
Saroj Yadav
Plant Disease ◽  
2017 ◽  
Vol 101 (6) ◽  
pp. 948-956 ◽  
Author(s):  
Alois A. Bell ◽  
Robert C. Kemerait ◽  
Carlos S. Ortiz ◽  
Sandria Prom ◽  
Jose Quintana ◽  
...  

Locally severe outbreaks of Fusarium wilt of cotton (Gossypium spp.) in South Georgia raised concerns about the genotypes of the causal pathogen, Fusarium oxysporum f. sp. vasinfectum. Vegetative complementation tests and DNA sequence analysis were used to determine genetic diversity among 492 F. oxysporum f. sp. vasinfectum isolates obtained from 107 wilted plants collected from seven fields in five counties. Eight vegetative complementation groups (VCG) were found, with VCG 01117B and VCG 01121 occurring in 66% of the infected plants. The newly recognized VCG 01121 was the major VCG in Berrien County, the center of the outbreaks. All eight VCG resulted in significant increases in the percentages of wilted leaves (27 to 53%) and significant reductions in leaf weight (40 to 67%) and shoot weight (33 to 60%) after being stem punctured into Gossypium hirsutum ‘Rowden’. They caused little or no significant reductions in shoot weight and height or increases in foliar symptoms and vascular browning in a soil-infestation assay. Soil infestation with Meloidogyne incognita race 3 (root-knot nematode) alone also failed to cause significant disease. When coinoculated with M. incognita race 3, all VCG caused moderate to severe wilt. Therefore, the VCG identified in this study belong to the vascular-competent pathotype, and should pose similar threats to cotton cultivars in the presence of the root-knot nematode. Use of nematode-resistant cultivars, therefore, is probably the best approach to control the disease in Georgia.


2021 ◽  
Vol 2 (1) ◽  
pp. 35-40
Author(s):  
Shakti Singh Bhati ◽  
B. L. Baheti

Cucumber (Cucumis sativus L.) is a high nutritious and mineral-rich vegetable, which occupies a prominent place as a salad and vegeta-ble. It is being used in many ways in the daily diet of humans and widely cultivated worldwide. The decrease of agricultural land, ad-verse environmental conditions and continuous increase of popula-tion, the demand of nutritious food is a matter of great concern to the world. Protected cultivation is a very effective tool to solve this problem because in this cultivation the productivity of crops is very high as compared to open field conditions. High value crops suc-cessfully grown in protected cultivation, specially vegetables (cu-cumber, tomato, Capsicum etc.) which are highly susceptible to the numerous pests and pathogens, including phyto-parasitic nema-todes (specially root-knot nematode, Meloidogyne spp.). With this view, present trial was taken to estimate the avoidable losses caused by Meloidogyne incognita infecting cucumber in poly-house situated on farmer’s field with the application of phorate at 2 kg a.i. ha-1 over check. Results exhibited that application of chemical treatment significantly reduced number of galls per 5 g roots, egg masses per 5 g roots, eggs & juveniles per egg mass and final nema-tode population 79.03, 81.10, 30.91 and 56.54%, respectively. Avoidable yield losses were recorded to the tune of 66.84% on cu-cumber by M. incognita in poly-house.


1961 ◽  
Vol 39 (3) ◽  
pp. 695-703 ◽  
Author(s):  
M. I. Timonin

The effects of the odoriferous volatile matter produced by Scaptocoris talpa Champ on the activity of Fusarium oxysporum f. cubense (E.F.S.) Sny. and Hans., F. oxysporum f. lycopersici (Sacc.) Sny. and Hans., and Meloidogyne incognita in soil, and its phytotoxicity to tomato seedlings, were investigated.The results obtained indicated that 50–75 insects per pot protected tomato seedlings (Bonny Best) and banana plants (Gros Michel) from attack by their respective fungus pathogens and one insect per 2 grams of soil protected tomato seedlings from attack by root-knot nematode.The apparatus especially constructed to study the phytotoxicity of odoriferous volatile matter to tomato seedlings and its effect on microbial population of the soil was described. By means of this apparatus it was found that 6 days of a weak flow of a mixture of air and volatile matter produced by 350–400 insects was not phytotoxic to six tomato seedlings. Furthermore, it was also found that volatile matter produced by 800 insects, under the same conditions, was not toxic to one tomato seedling. Under similar conditions the non-phytotoxic concentration of volatile matter produced by 350–400 insects reduced the density of F. oxysporum f. cubense population in soil samples containing 25 and 15% (w/w) of moisture by 61.20 and 45.78% respectively.It was also demonstrated that one insect per 2 grams of soil infested with the root-knot nematode during 16 hours' incubation produced a nematocidal concentration of volatile matter.The possibility of selective toxicity of volatile odoriferous matter to various bacteria is also discussed.


Plant Disease ◽  
2018 ◽  
Vol 102 (9) ◽  
pp. 1820-1827 ◽  
Author(s):  
Anthony P. Keinath ◽  
Paula A. Agudelo

Interspecific hybrid squash (Cucurbita maxima × C. moschata ‘Strong Tosa’) and bottle gourd (Lagenaria siceraria ‘Macis’) rootstocks are resistant to Fusarium oxysporum f. sp. niveum but susceptible to Meloidogyne incognita (Southern root-knot nematode). Coinfection of Early Prolific Straightneck summer squash (C. pepo) with root-knot nematode and F. oxysporum f. sp. niveum has been reported to increase susceptibility to Fusarium wilt. The objectives of this study were to determine whether such an interaction occurred between M. incognita and F. oxysporum f. sp. niveum races 1 and 2 on Strong Tosa, Macis, and watermelon cultivars Fascination (resistant to race 1) and Tri-X 313 (susceptible to both races). Hosts were inoculated in a greenhouse with one of four pathogen treatments: F. oxysporum f. sp. niveum, M. incognita, both pathogens, or neither pathogen. Galling was present on ≥10% of the root systems of 90% of the plants inoculated with M. incognita. Bottle gourd had less galling than interspecific hybrid squash. Plants not inoculated with F. oxysporum f. sp. niveum did not wilt. Four weeks after inoculation, incidence and severity of Fusarium wilt and recovery of F. oxysporum did not differ for any hosts inoculated with F. oxysporum f. sp. niveum alone and F. oxysporum f. sp. niveum plus M. incognita (host–treatment interactions not significant). In general, Early Prolific Straightneck grouped with the F. oxysporum f. sp. niveum-resistant rootstocks when inoculated with F. oxysporum f. sp. niveum race 2 and with the susceptible watermelon when inoculated with race 1, regardless of inoculation with M. incognita. Recovery of F. oxysporum from stems of inoculated watermelon was greater than recovery from the other three hosts, regardless of nematode inoculation. In conclusion, our experiments do not support the hypothesis that resistance to F. oxysporum f. sp. niveum in cucurbit rootstocks or resistant watermelon cultivars would be compromised when M. incognita infects the roots.


Nematology ◽  
2007 ◽  
Vol 9 (6) ◽  
pp. 771-776 ◽  
Author(s):  
Richard Sikora ◽  
Abd El-Fattah Dababat

AbstractThe non-pathogenic endophytic Fusarium oxysporum strain 162 (FO162) has been selected for its capacity to reduce root-knot nematode galling on tomato. The objectives of this study were to investigate the influence of this fungus on invasion of tomato roots by Meloidogyne incognita. The number of M. incognita that invaded roots of plants treated with FO162 was significantly lower (reductions of 36.0-55.9%) than in the non-treated controls in linked twin-pot chambers. The results demonstrated that colonisation of the roots by FO162 affects the number of M. incognita that penetrate the roots. The results of a choice test in the absence of a plant indicated that the tomato root exudates collected from plants colonised by FO162 are either less attractive or they exude substances that have repellent activity toward M. incognita juveniles.


2021 ◽  
Vol 17 (2) ◽  
pp. 600-603
Author(s):  
Vinod Kumar ◽  
S. S. Mann ◽  
Anil Kumar

Root-knot nematode, Meloidogyne incognita is an economically important plant-parasitic nematode of vegetable crops grown under open as well as protected cultivation. Use of resistant cultivar is an important measure for managing root-knot nematode as compared to the other management strategies. Despite the potential importance of this nematode, sources of resistance to M. incognita are not yet available for breeding purposes. Present studies were conducted to evaluate the resistant reaction of crop genotype (cucumber japanes long green, tomato shu, cherry tomato P. cherry tomato-1, bitter gourd pusa aushadhi and capsicum yalo wonder) against M. incognita under polyhouse conditions (2018-20). Sixty days after sowing, observations were recorded on number of galls/plant and final nematode population. All the crop genotypes of vegetables were showed varying degree of response against M. incognita. Out of five crop genotypes of vegetables, four (cucumber japanes long green, tomato shu, cherry tomato P. cherry tomato-1 and bitter gourd Pusa aushadhi) were susceptible/highly susceptible while capsicum yalo wonder showed moderately resistant reaction against M. incognita in both the years (2018-2020) and this genotype can be used as a source of resistance.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1383-1390 ◽  
Author(s):  
Anthony P. Keinath ◽  
W. Patrick Wechter ◽  
William B. Rutter ◽  
Paula A. Agudelo

Interspecific hybrid squash (Cucurbita maxima × Cucurbita moschata) rootstocks used to graft watermelon (Citrullus lanatus var. lanatus) are resistant to Fusarium oxysporum f. sp. niveum, the fungus that causes Fusarium wilt of watermelon, but they are susceptible to Meloidogyne incognita, the southern root knot nematode. A new citron (Citrullus amarus) rootstock cultivar Carolina Strongback is resistant to F. oxysporum f. sp. niveum and M. incognita. The objective of this study was to determine if an interaction between M. incognita and F. oxysporum f. sp. niveum race 2 occurred on grafted or nongrafted triploid watermelon susceptible to F. oxysporum f. sp. niveum race 2. In 2016 and 2018, plants of nongrafted cultivar Fascination and Fascination grafted onto Carolina Strongback and interspecific hybrid squash cultivar Carnivor were inoculated or not inoculated with M. incognita before transplanting into field plots infested or not infested with F. oxysporum f. sp. niveum race 2. Incidence of Fusarium wilt and area under the disease progress curve did not differ when hosts were inoculated with F. oxysporum f. sp. niveum alone or F. oxysporum f. sp. niveum and M. incognita together. Fusarium wilt was greater on nongrafted watermelon (78% mean incidence) than on both grafted rootstocks and lower on Carnivor (1% incidence) than on Carolina Strongback (12% incidence; P ≤ 0.01). Plants not inoculated with F. oxysporum f. sp. niveum did not wilt. At the end of the season, Carnivor had a greater percentage of the root system galled than the other two hosts, whereas galling did not differ on Fascination and Carolina Strongback. F. oxysporum f. sp. niveum reduced marketable weight of nongrafted Fascination with and without coinoculation with M. incognita. M. incognita reduced marketable weight of Fascination grafted onto Carnivor compared with noninoculated, nongrafted Fascination. In conclusion, cucurbit rootstocks that are susceptible and resistant to M. incognita retain resistance to F. oxysporum f. sp. niveum when they are coinfected with M. incognita.


Author(s):  
Neetu Singh ◽  
Manoj Kumar Jat ◽  
Bharat Singh

Background: Crops are constantly exposed to various organisms feeding on above and belowground parts under both natural and protected conditions. As compare to open field, the warm and humid conditions besides abundant food under protected conditions provide a stable environment for pest and disease development either alone or together. However, the natural enemies i.e. predators, parasites and parasitoids that keep pests and pathogens under control naturally are not present under protected environment. For these possible reasons, pest and pathogens often develop in polyhouses more rapidly and with greater severity than open fields.Methods: A polyhouses study was carried out during last two months June and July in Patudi block of district Gurugram, Haryana where growers are facing failure of cucumber crop due to outbreak of insect pests- disease complexes on common host cucumber. On closer observation, symptoms of leaf miner as mining lines on leaves and galls or knots on roots the symptoms of root knot nematode were encountered. Further detailed lab based investigation were carried out on affected cucumber plant and root samples with the objective for isolation and identification of both pests and pathogens. For leaf miner morphological identification, the pattern of the feeding tunnel and the layer of the leaf being mined by leaf miner is one of the diagnostic key are useful to determine the species and instar of the leaf miner. However, Sieving and decantation method for nematode isolation and soil dilution method for fungal isolation were carried out and followed by morphological identification. Result: Two types of herbivore i.e. leaf miner Liriomyza trifolii (Burgess) on aerial parts while root knot nematode, Meloidogyne javanica and wilt causing fungus Fusarium oxysporum f. sp. cucumerinum were identified on the basis of their specific morphological characters. Galled roots of cucumber were affected by combined attack of vascular bundle feeders, root knot nematode, Meloidogyne javanica and wilt causing fungus Fusarium oxysporum f. sp. cucumerinum identified in both soil and root samples. This kind of field report on cucumber crop under protected cultivation has not been reported so far in which three types of pest and pathogens are feeding on the same host. Poly houses or ‘hot spots’ are selected for detailed investigation especially for growers’ friendly management in addition to interaction studies of upper and lower ground herbivores on cucumber crops. 


Sign in / Sign up

Export Citation Format

Share Document