scholarly journals Closed Loop Control of PV fed High Voltage Gain DC-DC converter with Two-Input Boost-Stages

Author(s):  
P. Sravana Lakshmi
2019 ◽  
Vol 8 (2) ◽  
pp. 4945-4949

The study demonstrates the simulation of distinct strategies of control applicable for an AC-AC Boost-converter based on a p.m.s.mdrive for industrial automation and traction. A non varying voltage feeding a circuit of inverter with an implementation following a strategy of voltage based control, which takes into consideration of speed (mechanical) of the motor. This strategy is observed to control the voltage output of a converter on AC-DC.At the input side a boost converter is connect which incorporates an open as well as closed loop control. The controllers utilised for such conversion are PI and FLC. A VSIPMSM is modelled, simulated using a MAT Lab tool and the outcomes are compared to check the performance of both the controllers. Results predicts that there is an enhanced dynamic response in addition to an increased voltage gain for an FLC based Boost converter control rather than a PI based boost converter control..


2020 ◽  
Vol 67 (4) ◽  
pp. 2863-2874 ◽  
Author(s):  
Atif Iqbal ◽  
Mahajan Sagar Bhaskar ◽  
Mohammad Meraj ◽  
Sanjeevikumar Padmanaban ◽  
Syed Rahman

Author(s):  
P.Rangeela and Dr.A.RubyMeena

The high step up dc-dc converter with a quadratic boost converter with voltage multiplier cell (VM) to achieve a high voltage gain in the continuous conduction mode (CCM). To increase higher voltage gain, lower voltage stress on diodes and capacitors and requiring smaller inductors with reduced number of components. Quadratic Boost DC-DC converters are mainly used in applications like HEVs and EVs vehicles. The purpose of boost converter is to charge a low-voltage (12 V) battery during boost mode and to assist the high-voltage 200V battery. In this implementation, closed-loop control in high voltage side is implemented using PI (proportional integral) controller.


Author(s):  
P.Rangeela and Dr.A.RubyMeena

The high step up dc-dc converter with a quadratic boost converter with voltage multiplier cell (VM) to achieve a high voltage gain in the continuous conduction mode (CCM). To increase higher voltage gain, lower voltage stress on diodes and capacitors and requiring smaller inductors with reduced number of components. Quadratic Boost DC-DC converters are mainly used in applications like HEVs and EVs vehicles. The purpose of boost converter is to charge a low-voltage (12 V) battery during boost mode and to assist the high-voltage 200V battery. In this implementation, closed-loop control in high voltage side is implemented using PI (proportional integral) controller


2012 ◽  
Vol 220 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Sandra Sülzenbrück

For the effective use of modern tools, the inherent visuo-motor transformation needs to be mastered. The successful adjustment to and learning of these transformations crucially depends on practice conditions, particularly on the type of visual feedback during practice. Here, a review about empirical research exploring the influence of continuous and terminal visual feedback during practice on the mastery of visuo-motor transformations is provided. Two studies investigating the impact of the type of visual feedback on either direction-dependent visuo-motor gains or the complex visuo-motor transformation of a virtual two-sided lever are presented in more detail. The findings of these studies indicate that the continuous availability of visual feedback supports performance when closed-loop control is possible, but impairs performance when visual input is no longer available. Different approaches to explain these performance differences due to the type of visual feedback during practice are considered. For example, these differences could reflect a process of re-optimization of motor planning in a novel environment or represent effects of the specificity of practice. Furthermore, differences in the allocation of attention during movements with terminal and continuous visual feedback could account for the observed differences.


Sign in / Sign up

Export Citation Format

Share Document