scholarly journals Experimental Investigation on Strength and Durability Properties of Concrete by Replacing Natural Sand by Manufacture Sand and Fly Ash

Author(s):  
Ms. Sushmita Patil
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
G. Ganesh Prabhu ◽  
Jin Wook Bang ◽  
Byung Jae Lee ◽  
Jung Hwan Hyun ◽  
Yun Yong Kim

In recent years, the construction industry has been faced with a decline in the availability of natural sand due to the growth of the industry. On the other hand, the metal casting industries are being forced to find ways to safely dispose of waste foundry sand (FS). With the aim of resolving both of these issues, an investigation was carried out on the reuse of waste FS as an alternative material to natural sand in concrete production, satisfied with relevant international standards. The physical and chemical properties of the FS were addressed. The influence of FS on the behaviour of concrete was evaluated through strength and durability properties. The test results revealed that compared to the concrete mixtures with a substitution rate of 30%, the control mixture had a strength value that was only 6.3% higher, and this enhancement is not particularly high. In a similar manner, the durability properties of the concrete mixtures containing FS up to 30% were relatively close to those of control mixture. From the test results, it is suggested that FS with a substitution rate of up to 30% can be effectively used in concrete production without affecting the strength and durability properties of the concrete.


Concrete is one of the most commonly and widely adopted material for construction. Cement is used as primary binder material to produce Concrete. However, every tonne of Cement production releases one tonne of greenhouse gases which results in global warming; due to continuous and ever increased usage of Cement and natural sand are causing uncontrollable global warming and depletion of natural resources respectively year by year. This tendency needs to be retarded if not arrested, by developing a comprehensive approach to use more and more pozzolanic mineral admixtures and manufactured sand (M-Sand) in Concrete. In this study on fiber reinforced concrete (with steel fiber @ 1% of binder), Ordinary Portland Cement (OPC) is replaced up to 50% with Fly Ash and Ground Granulated Blast-Furnace slag (GGBS) for M30 grade of Concrete. Mechanical properties like compressive strength and split tensile strength at 7 days and 28day age are tested. Additionally, durability tests like water absorption and sorptivity tests are conducted after 28days of curing. The test results indicated that workability was increased and there was no significant improvement in durability properties on increasing the percentage of OPC replacement. However, 30% of OPC replacement is found to be optimum for strength criteria


The use of abundantly available wastes such as Fly ash and ceramic powder in construction industry in the form of geopolymer concrete turns out to be the search of a very promising building material for a sustainable future[15].This study has been undertaken to investigate the strength and durability properties of geopolymer concrete by adding ceramic powder in different percentage as source material in addition with flyash[16]. All investigations are mainly focused towards geopolymer concrete mainly with flyash as source material. In this study, ceramic waste powder is added since it is also one of the major waste material as flyash. Nowadays, almost all the construction are carried out with ceramic products which results with more ceramic waste powder. Thus this work focused to utilize this waste powder into geopolymer concrete. Characteristic strength and primary durability properties are carried out by adding ceramic powder with 50%,40% and30% with fly ash. Thus this paper focuses on varying the proportions of fly ash and ceramic waste powder (50:50, 60:40, 70:30) in geopolymer concrete incorporating with polypropylene fibres in percentage of 0.5%,0.75% and 1% in volume of concrete to evaluate its strength and durability characteristics. The alkaline activator solution used is a mixture of 10 molar Sodium hydroxide and Sodium silicate in the ratio 1:3. Ambient curing condition is applied for the specimens. M-Sand is used instead of fine aggregate, since many literature reveals addition of M-Sand gains more strength in geopolymer Concrete.


Author(s):  
Shaik Numan Mahdi ◽  
Dushyanth V Babu R ◽  
Nabil Hossiney ◽  
Mohd Mustafa Al Bakri Abdullah

Sign in / Sign up

Export Citation Format

Share Document