scholarly journals A High Power Density Converter with a Continuous Input Current Waveform for Satellite Power Applications

Author(s):  
Kema Vivek

Conventional Active Clamp-Forward topology is studied for a satellite converter owing to its comparitively simple structure, minimum number of components and fine clamping capability concerning its switch voltage stress. However, it has a high switch voltage stress,a high di/dt level and has pulsating input current shape. These are disadvantageous with respect to the EMI filter size and high input voltage converter applications.To get the better of these drawbacks, a new ACF topology with a continuous input current waveform is proposed . By this proposed waveform ,the voltage stresses on the main switches are relieved. This is crucial reliability of satelite FET switches, by utilizing a two series connected structure. These conditions will allow the proposed converter to serve as a high input voltage, high power density satellite converter.

2020 ◽  
Vol 67 (2) ◽  
pp. 1024-1035 ◽  
Author(s):  
Nayoung Lee ◽  
Ju-Young Lee ◽  
Yee-Jin Cheon ◽  
Sang-Kyoo Han ◽  
Gun-Woo Moon

2018 ◽  
Vol 15 (6) ◽  
pp. 688-699 ◽  
Author(s):  
Mohsen Karimi ◽  
Mohammad Pichan ◽  
Adib Abrishamifar ◽  
Mehdi Fazeli

PurposeThis paper aims to propose a novel integrated control method (ICM) for high-power-density non-inverting interleaved buck-boost DC-DC converter. To achieve high power conversion by conventional single phase DC-DC converter, inductor value must be increased. This converter is not suitable for industrial and high-power applications as large inductor value will increase the inductor current ripple. Thus, two-phase non-inverting interleaved buck-boost DC-DC converter is proposed.Design/methodology/approachThe proposed ICM approach is based on the theory of integrated dynamic modeling of continuous conduction mode (CCM), discontinuous conduction mode and synchronizing parallel operation mode. In addition, it involves the output voltage controller with inner current loop (inductor current controller) to make a fair balancing between two stages. To ensure fast transient performance, proposed digital ICM is implemented based on a TMS320F28335 digital signal microprocessor.FindingsThe results verify the effectiveness of the proposed ICM algorithm to achieve high voltage regulating (under 0.01 per cent), very low inductor current ripple (for boost is 1.96 per cent, for buck is 1.1) and fair input current balance between two stages (unbalancing current less than 0.5A).Originality/valueThe proposed new ICM design procedure is developed satisfactorily to ensure fast transient response even under high load variation and the solving R right-half-plane HP zeros of the CCM. In addition, the proposed method can equally divide the input current of stages and stable different parallel operation modes with large input voltage variations.


Author(s):  
Ahmed H. Okilly ◽  
Jeihoon Baek

This paper presents an optimal design for the inner current control loop of the continuous current conduction mode (CCM) power factor correction (PFC) stage, which it can be used as the front stage of the two stages alternating current-direct current (AC-DC) telecom power supply. Conventional single-phase CCM-PFC boost converter usually implemented with using of the proportional-integral (PI) controllers in both of the voltage and current control loops, to regulate the output DC voltage to the specified value, moreover to maintains the input current follows the input voltage which offers converter with high power factor (P.F) and low current total harmonic distortion (THD). However, due to the slow dynamic response of the PI controller at the zero-crossing point of the input supply current, input current can’t fully follow the input voltage which leads to high THD. Digitally controlled PFC converter with an optimal design of the inner current control loop using doubly control loops IP controller to reduce the THD and to offer input current with unity P.F was performed in this paper. Furthermore, for the economic design of the digitally control PFC converter, two isolated AC and DC voltage sensors are proposed and designed for the interfacing with the microcontroller unit (MCU). PSIM software was used to test the converter performance with using the proposed designed current controllers and isolated voltage sensors. High power density digitally controlled telecom PFC stage with P.F of about 99.93%, full load efficiency of about 98.70% and THD less 5.50% is achieved in this work.


Sign in / Sign up

Export Citation Format

Share Document