scholarly journals Movie Recommendation System using Machine Learning

Author(s):  
Shobana M

A movie recommendation is important in our social life due to its strength in providing enhanced entertainment. Such a system can suggest a set of movies to users based on their interest, or the popularities of the movies. A recommendation system is used for the purpose of suggesting items to purchase or to see. They direct users towards those items which can meet their needs through cutting down large database of Information. A recommender system, or a recommendation system (sometimes replacing 'system' with a synonym such as platform or engine), is a subclass of information filtering system that seeks to predict the "rating" or "preference" a user would give to an item. They are primarily used in commercial applications. MOVREC also help users to find the movies of their choices based on the movie experience of other users in efficient and effective manner without wasting much time in useless browsing

2020 ◽  
Vol 10 (5) ◽  
pp. 37-39
Author(s):  
Shawni Dutta ◽  
Prof. Samir Kumar Bandyopadhyay

Researchers still believe that the information filtering system/ collaborating system is a recommender system or a recommendation system. It is used to predict the "rating" or "preference" of a user to an item.  In other words, both predict rating or preference for an item or product on a specific platform. The aim of the paper is to extend the areas of the recommender system/recommendation systems. The basic task of the recommender system mainly is to predict or analyze items/product. If it is possible to include more products in the system, then obviously the system may be extended for other areas also. For example, Medicine is a product and doctors filter the particular medicine for the particular disease. In the medical diagnosis doctors prescribed a medicine and it a product. It depends on the disease of the user/patient so here doctor predicts a medicine or product just like an item is recommended in a recommender system. The main objective of the paper is to extend the Recommender System/Recommendation system in other fields so that the research works can be extended Social Science, Bio-medical Science and many other areas.


Author(s):  
Gandhali Malve ◽  
Lajree Lohar ◽  
Tanay Malviya ◽  
Shirish Sabnis

Today the amount of information in the internet growth very rapidly and people need some instruments to find and access appropriate information. One of such tools is called recommendation system. Recommendation systems help to navigate quickly and receive necessary information. Many of us find it difficult to decide which movie to watch and so we decided to make a recommender system for us to better judge which movie we are more likely to love. In this project we are going to use Machine Learning Algorithms to recommend movies to users based on genres and user ratings. Recommendation system attempt to predict the preference or rating that a user would give to an item.


2021 ◽  
Vol 7 (2) ◽  
pp. 71-78
Author(s):  
Timothy Dicky ◽  
Alva Erwin ◽  
Heru Purnomo Ipung

The purpose of this research is to develop a job recommender system based on the Hadoop MapReduce framework to achieve scalability of the system when it processes big data. Also, a machine learning algorithm is implemented inside the job recommender to produce an accurate job recommendation. The project begins by collecting sample data to build an accurate job recommender system with a centralized program architecture. Then a job recommender with a distributed system program architecture is implemented using Hadoop MapReduce which then deployed to a Hadoop cluster. After the implementation, both systems are tested using a large number of applicants and job data, with the time required for the program to compute the data is recorded to be analyzed. Based on the experiments, we conclude that the recommender produces the most accurate result when the cosine similarity measure is used inside the algorithm. Also, the centralized job recommender system is able to process the data faster compared to the distributed cluster job recommender system. But as the size of the data grows, the centralized system eventually will lack the capacity to process the data, while the distributed cluster job recommender is able to scale according to the size of the data.


Author(s):  
A.Y. Zhubatkhan ◽  
Z.A. Buribayev ◽  
S.S. Aubakirov ◽  
M.D. Dilmagambetova ◽  
S.A. Ryskulbek

The trend of the Internet makes the presentation of the right content for the right user inevitable. To this end, recommendation systems are used in areas such as music, books, movies, travel planning, e-commerce, education, and more. One of the most popular recommendation systems in the world is Netflix, which generated record profits during quarantine in the first quartile of 2020. The systematic approach of recommendations is based on the history of user selections, likes and reviews, each of which is interpreted to predict future user selections. This article provides a meaningful analysis of various recommendation systems, such as content-based, collaborative filtering and popularity. We reviewed 7 articles published from 2005 to 2019 to discuss issues related to existing models. The purpose of this article is to compare machine learning algorithms in the Surprise library for a recommendation system. Recommendation system has been implemented and quality has been evaluated using the MAE and RMSE metrics.


Author(s):  
S. A. Azeem Farhan

Abstract: The recommendation problem involves the prediction of a set of items that maximize the utility for users. As a solution to this problem, a recommender system is an information filtering system that seeks to predict the rating given by a user to an item. There are theree types of recommendation systesms namely Content based, Collaborative based and the Hybrid based Recommendation systems. The collaborative filtering is further classified into the user based collaborative filtering and item based collaborative filtering. The collaborative filtering (CF) based recommendation systems are capable of grasping the interaction or correlation of users and items under consideration. We have explored most of the existing collaborative filteringbased research on a popular TMDB movie dataset. We found out that some key features were being ignored by most of the previous researches. Our work has given significant importance to 'movie overviews' available in the dataset. We experimented with typical statistical methods like TF-IDF , By using tf-idf the dimensions of our courps(overview and other text features) explodes, which creates problems ,we have tackled those problems using a dimensionality reduction technique named Singular Value Decomposition(SVD). After this preprocessing the Preprocessed data is being used in building the models. We have evaluated the performance of different machine learning algorithms like Random Forest and deep neural networks based BiLSTM. The experiment results provide a reliable model in terms of MAE(mean absolute error) ,RMSE(Root mean squared error) and the Bi-LSTM turns out to be a better model with an MAE of 0.65 and RMSE of 1.04 ,it generates more personalized movie recommendations compared to other models. Keywords: Recommender system, item-based collaborative filtering, Natural Language Processing, Deep learning.


Sign in / Sign up

Export Citation Format

Share Document