scholarly journals Building A Movie Recommendation System Using Collaborative Filtering With TF-IDF

Author(s):  
S. A. Azeem Farhan

Abstract: The recommendation problem involves the prediction of a set of items that maximize the utility for users. As a solution to this problem, a recommender system is an information filtering system that seeks to predict the rating given by a user to an item. There are theree types of recommendation systesms namely Content based, Collaborative based and the Hybrid based Recommendation systems. The collaborative filtering is further classified into the user based collaborative filtering and item based collaborative filtering. The collaborative filtering (CF) based recommendation systems are capable of grasping the interaction or correlation of users and items under consideration. We have explored most of the existing collaborative filteringbased research on a popular TMDB movie dataset. We found out that some key features were being ignored by most of the previous researches. Our work has given significant importance to 'movie overviews' available in the dataset. We experimented with typical statistical methods like TF-IDF , By using tf-idf the dimensions of our courps(overview and other text features) explodes, which creates problems ,we have tackled those problems using a dimensionality reduction technique named Singular Value Decomposition(SVD). After this preprocessing the Preprocessed data is being used in building the models. We have evaluated the performance of different machine learning algorithms like Random Forest and deep neural networks based BiLSTM. The experiment results provide a reliable model in terms of MAE(mean absolute error) ,RMSE(Root mean squared error) and the Bi-LSTM turns out to be a better model with an MAE of 0.65 and RMSE of 1.04 ,it generates more personalized movie recommendations compared to other models. Keywords: Recommender system, item-based collaborative filtering, Natural Language Processing, Deep learning.

Author(s):  
Gandhali Malve ◽  
Lajree Lohar ◽  
Tanay Malviya ◽  
Shirish Sabnis

Today the amount of information in the internet growth very rapidly and people need some instruments to find and access appropriate information. One of such tools is called recommendation system. Recommendation systems help to navigate quickly and receive necessary information. Many of us find it difficult to decide which movie to watch and so we decided to make a recommender system for us to better judge which movie we are more likely to love. In this project we are going to use Machine Learning Algorithms to recommend movies to users based on genres and user ratings. Recommendation system attempt to predict the preference or rating that a user would give to an item.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Imen Gmach ◽  
Nadia Abaoub ◽  
Rubina Khan ◽  
Naoufel Mahfoudh ◽  
Amira Kaddour

PurposeIn this article the authors will focus on the state of the art on information filtering and recommender systems based on trust. Then the authors will represent a variety of filtering and recommendation techniques studied in different literature, like basic content filtering, collaborative filtering and hybrid filtering. The authors will also examine different trust-based recommendation algorithms. It will ends with a summary of the different existing approaches and it develops the link between trust, sustainability and recommender systems.Design/methodology/approachMethodology of this study will begin with a general introduction to the different approaches of recommendation systems; then define trust and its relationship with recommender systems. At the end the authors will present their approach to “trust-based recommendation systems”.FindingsThe purpose of this study is to understand how groups of users could improve trust in a recommendation system. The authors will examine how to evaluate the performance of recommender systems to ensure their ability to meet the needs that led to its creation and to make the system sustainable with respect to the information. The authors know very well that selecting a measure must depend on the type of data to be processed and user interests. Since the recommendation domain is derived from information search paradigms, it is obvious to use the evaluation measures of information systems.Originality/valueThe authors presented a list of recommendations systems. They examined and compared several recommendation approaches. The authors then analyzed the dominance of collaborative filtering in the field and the emergence of Recommender Systems in social web. Then the authors presented and analyzed different trust algorithms. Finally, their proposal was to measure the impact of trust in recommendation systems.


2020 ◽  
Vol 10 (5) ◽  
pp. 37-39
Author(s):  
Shawni Dutta ◽  
Prof. Samir Kumar Bandyopadhyay

Researchers still believe that the information filtering system/ collaborating system is a recommender system or a recommendation system. It is used to predict the "rating" or "preference" of a user to an item.  In other words, both predict rating or preference for an item or product on a specific platform. The aim of the paper is to extend the areas of the recommender system/recommendation systems. The basic task of the recommender system mainly is to predict or analyze items/product. If it is possible to include more products in the system, then obviously the system may be extended for other areas also. For example, Medicine is a product and doctors filter the particular medicine for the particular disease. In the medical diagnosis doctors prescribed a medicine and it a product. It depends on the disease of the user/patient so here doctor predicts a medicine or product just like an item is recommended in a recommender system. The main objective of the paper is to extend the Recommender System/Recommendation system in other fields so that the research works can be extended Social Science, Bio-medical Science and many other areas.


Author(s):  
Taushif Anwar ◽  
V. Uma ◽  
Gautam Srivastava

In recommender systems, Collaborative Filtering (CF) plays an essential role in promoting recommendation services. The conventional CF approach has limitations, namely data sparsity and cold-start. The matrix decomposition approach is demonstrated to be one of the effective approaches used in developing recommendation systems. This paper presents a new approach that uses CF and Singular Value Decomposition (SVD)[Formula: see text] for implementing a recommendation system. Therefore, this work is an attempt to extend the existing recommendation systems by (i) finding similarity between user and item from rating matrices using cosine similarity; (ii) predicting missing ratings using a matrix decomposition approach, and (iii) recommending top-N user-preferred items. The recommender system’s performance is evaluated considering Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). Performance evaluation is accomplished by comparing the systems developed using CF in combination with six different algorithms, namely SVD, SVD[Formula: see text], Co-Clustering, KNNBasic, KNNBaseline, and KNNWithMeans. We have experimented using MovieLens 100[Formula: see text]K, MovieLens 1[Formula: see text]M, and BookCrossing datasets. The results prove that the proposed approach gives a lesser error rate when cross-validation ([Formula: see text]) is performed. The experimental results show that the lowest error rate is achieved with MovieLens 100[Formula: see text]K dataset ([Formula: see text], [Formula: see text]). The proposed approach also alleviates the sparsity and cold-start problems and recommends the relevant items.


Author(s):  
Sonam Singh ◽  
◽  
Kriti Srivastva ◽  

The role of recommender system is very vital in recent times for a lot of individuals. It helps in taking decisions without exploring physically. Broadly there are two types of recommender system: Content based and Collaborative Filtering. The first one focus on user’s history and takes decisions. But there could be times when decisions based on only user history is not sufficient. For this, there is a need to analyze many parameters influencing the decision such as previous history, Age, gender, location etc. In the second approach it finds similar group of users based on several parameters and then takes decisions. Over the last few decades machine learning algorithms have proved their worth in this area because of their ability to learn from the given data and identify various hidden patterns. With this learning, these algorithms are able to generalize very well for unknown data. In this research work, a survey on three different machine learning based collaborative filtering methods are presented using Movie Lens dataset. The comparison of all three methods based on RMSE and MAE error is also discussed.


Author(s):  
Walaa H. El-Ashmawi ◽  
Ahmed F. Ali ◽  
Adam Slowik

AbstractRecommender systems (RSs) have gained immense popularity due to their capability of dealing with a huge amount of information available in various domains. They are considered to be information filtering systems that make predictions or recommendations to users based on their interests. One of the most common recommender system techniques is user-based collaborative filtering. In this paper, we follow this technique by proposing a new algorithm which is called hybrid crow search and uniform crossover algorithm (HCSUC) to find a set of feasible clusters of similar users to enhance the recommendation process. Invoking the genetic uniform crossover operator in the standard crow search algorithm can increase the diversity of the search and help the algorithm to escape from trapping in local minima. The top-N recommendations are presented for the corresponding user according to the most feasible cluster’s members. The performance of the HCSUC algorithm is evaluated using the Jester dataset. A set of experiments have been conducted to validate the solution quality and accuracy of the HCSUC algorithm against the standard particle swarm optimization (PSO), African buffalo optimization (ABO), and the crow search algorithm (CSA). In addition, the proposed algorithm and the other meta-heuristic algorithms are compared against the collaborative filtering recommendation technique (CF). The results indicate that the HCSUC algorithm has obtained superior results in terms of mean absolute error, root means square errors and in minimization of the objective function.


2020 ◽  
Vol 10 (16) ◽  
pp. 5510 ◽  
Author(s):  
Diana Ferreira ◽  
Sofia Silva ◽  
António Abelha ◽  
José Machado

The magnitude of the daily explosion of high volumes of data has led to the emergence of the Big Data paradigm. The ever-increasing amount of information available on the Internet makes it increasingly difficult for individuals to find what they need quickly and easily. Recommendation systems have appeared as a solution to overcome this problem. Collaborative filtering is widely used in this type of systems, but high dimensions and data sparsity are always a main problem. With the idea of deep learning gaining more importance, several works have emerged to improve this type of filtering. In this article, a product recommendation system is proposed where an autoencoder based on a collaborative filtering method is employed. A comparison of this model with the Singular Value Decomposition is made and presented in the results section. Our experiment shows a very low Root Mean Squared Error (RMSE) value, considering that the recommendations presented to the users are in line with their interests and are not affected by the data sparsity problem as the datasets are very sparse, 0.996. The results are quite promising achieving an RMSE value of 0.029 in the first dataset and 0.010 in the second one.


2021 ◽  
Vol 5 (4) ◽  
pp. 448
Author(s):  
Budi Juarto ◽  
Abba Suganda Girsang

The number of news produced every day is as much as 3 million per day, making readers have many choices in choosing news according to each reader's topic and category preferences. The recommendation system can make it easier for users to choose the news to read. The method that can be used in providing recommendations from the same user is collaborative filtering. Neural collaborative filtering is usually being used for recommendation systems by combining collaborative filtering with neural networks. However, this method has the disadvantage of recommending the similarity of news content such as news titles and content to users. This research wants to develop neural collaborative filtering using sentences BERT. Sentence BERT is applied to news titles and news contents that are converted into sentence embedding. The results of this sentence embedding are used in neural collaboration with item id, user id, and news category. We use a Microsoft news dataset of 50,000 users and 51,282 news, with 5,475,542 interactions between users and news. The evaluation carried out in this study uses precision, recall, and ROC curves to predict news clicks by the user. Another evaluation uses a hit ratio with the leave one out method. The evaluation results obtained a precision value of 99.14%, recall of 92.48%, f1-score of 95.69%, and ROC score of 98%. Evaluation measurement using the hit ratio@10 produces a hit ratio of 74% at fiftieth epochs for neural collaborative with sentence BERT which is better than neural collaborative filtering (NCF) and NCF with news category.


2020 ◽  
Vol 14 ◽  
Author(s):  
Amreen Ahmad ◽  
Tanvir Ahmad ◽  
Ishita Tripathi

: The immense growth of information has led to the wide usage of recommender systems for retrieving relevant information. One of the widely used methods for recommendation is collaborative filtering. However, such methods suffer from two problems, scalability and sparsity. In the proposed research, the two issues of collaborative filtering are addressed and a cluster-based recommender system is proposed. For the identification of potential clusters from the underlying network, Shapley value concept is used, which divides users into different clusters. After that, the recommendation algorithm is performed in every respective cluster. The proposed system recommends an item to a specific user based on the ratings of the item’s different attributes. Thus, it reduces the running time of the overall algorithm, since it avoids the overhead of computation involved when the algorithm is executed over the entire dataset. Besides, the security of the recommender system is one of the major concerns nowadays. Attackers can come in the form of ordinary users and introduce bias in the system to force the system function that is advantageous for them. In this paper, we identify different attack models that could hamper the security of the proposed cluster-based recommender system. The efficiency of the proposed research is validated by conducting experiments on student dataset.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mohammadsadegh Vahidi Farashah ◽  
Akbar Etebarian ◽  
Reza Azmi ◽  
Reza Ebrahimzadeh Dastjerdi

AbstractOver the past decade, recommendation systems have been one of the most sought after by various researchers. Basket analysis of online systems’ customers and recommending attractive products (movies) to them is very important. Providing an attractive and favorite movie to the customer will increase the sales rate and ultimately improve the system. Various methods have been proposed so far to analyze customer baskets and offer entertaining movies but each of the proposed methods has challenges, such as lack of accuracy and high error of recommendations. In this paper, a link prediction-based method is used to meet the challenges of other methods. The proposed method in this paper consists of four phases: (1) Running the CBRS that in this phase, all users are clustered using Density-based spatial clustering of applications with noise algorithm (DBScan), and classification of new users using Deep Neural Network (DNN) algorithm. (2) Collaborative Recommender System (CRS) Based on Hybrid Similarity Criterion through which similarities are calculated based on a threshold (lambda) between the new user and the users in the selected category. Similarity criteria are determined based on age, gender, and occupation. The collaborative recommender system extracts users who are the most similar to the new user. Then, the higher-rated movie services are suggested to the new user based on the adjacency matrix. (3) Running improved Friendlink algorithm on the dataset to calculate the similarity between users who are connected through the link. (4) This phase is related to the combination of collaborative recommender system’s output and improved Friendlink algorithm. The results show that the Mean Squared Error (MSE) of the proposed model has decreased respectively 8.59%, 8.67%, 8.45% and 8.15% compared to the basic models such as Naive Bayes, multi-attribute decision tree and randomized algorithm. In addition, Mean Absolute Error (MAE) of the proposed method decreased by 4.5% compared to SVD and approximately 4.4% compared to ApproSVD and Root Mean Squared Error (RMSE) of the proposed method decreased by 6.05 % compared to SVD and approximately 6.02 % compared to ApproSVD.


Sign in / Sign up

Export Citation Format

Share Document