scholarly journals Audio and Visual Model for Real World Interaction

Author(s):  
Akarshak Bose

: Communication with the proper information can be helpful for any person to carry out conversations. The proposed system is to help people to interact freely with full information about the past conversations with the person they are meeting. The device UPAL will identify the face and voice of the person and will store necessary details about the meeting, by recording the conversations or by taking inputs from the user. Next time when the user meets the same person, the device will fetch the information from the storage that can be used for a comfortable conversation. UPAL is made up of a Camera and microphone that will use the Face recognition technique and voice recognition system to collect the data. A mobile-based application will be provided to the user for viewing, editing the stored information. UPAL will ensure smart conversation by guiding and reminding the user.

Author(s):  
Mochammad Langgeng Prasetyo ◽  
Achmad Teguh Wibowo ◽  
Mujib Ridwan ◽  
Mohammad Khusnu Milad ◽  
Sirajul Arifin ◽  
...  

The implementation of face recognition technique using CCTV is able to prevent unauthorized person enter the gate. Face recognition can be used for authentication, which can be implemented for preventing of criminal incidents. This re-search proposed a face recognition system using convolutional neural network to open and close the real-time barrier gate. The process consists of a convolutional layer, pooling layer, max pooling, flattening, and fully connected layer for detecting a face. The information was sent to the microcontroller using Internet of Thing (IoT) for controlling the barrier gate. The face recognition results are used to open or close the gate in the real time. The experimental results obtained average error rate of 0.320 and the accuracy of success rate is about 93.3%. The average response time required by microcontroller is about 0.562ms. The simulation result show that the face recognition technique using CNN is highly recommended to be implemented in barrier gate system.


Author(s):  
Edy Winarno ◽  
Agus Harjoko ◽  
Aniati Murni Arymurthy ◽  
Edi Winarko

<p>The main problem in face recognition system based on half-face pattern is how to anticipate poses and illuminance variations to improve recognition rate. To solve this problem, we can use two lenses on stereo vision camera in face recognition system. Stereo vision camera has left and right lenses that can be used to produce a 2D image of each lens. Stereo vision camera in face recognition has capability to produce two of 2D face images with a different angle. Both angle of the face image will produce a detailed image of the face and better lighting levels on each of the left and right lenses. In this study, we proposed a face recognition technique, using 2 lens on a stereo vision camera namely symmetrical half-join. Symmetrical half-join is a method of normalizing the image of the face detection on each of the left and right lenses in stereo vision camera, then cropping and merging at each image. Tests on face recognition rate based on the variety of poses and variations in illumination shows that the symmetrical half-join method is able to provide a high accuracy of face recognition and can anticipate variations in given pose and illumination variations. The proposed model is able to produce 86% -97% recognition rate on a variety of poses and variations in angles between 0 °- 22.5 °. The variation of illuminance measured using a lux meter can result in 90% -100% recognition rate for the category of at least dim lighting levels (above 10 lux).</p>


Author(s):  
Edy Winarno ◽  
Agus Harjoko ◽  
Aniati Murni Arymurthy ◽  
Edi Winarko

<p>The main problem in face recognition system based on half-face pattern is how to anticipate poses and illuminance variations to improve recognition rate. To solve this problem, we can use two lenses on stereo vision camera in face recognition system. Stereo vision camera has left and right lenses that can be used to produce a 2D image of each lens. Stereo vision camera in face recognition has capability to produce two of 2D face images with a different angle. Both angle of the face image will produce a detailed image of the face and better lighting levels on each of the left and right lenses. In this study, we proposed a face recognition technique, using 2 lens on a stereo vision camera namely symmetrical half-join. Symmetrical half-join is a method of normalizing the image of the face detection on each of the left and right lenses in stereo vision camera, then cropping and merging at each image. Tests on face recognition rate based on the variety of poses and variations in illumination shows that the symmetrical half-join method is able to provide a high accuracy of face recognition and can anticipate variations in given pose and illumination variations. The proposed model is able to produce 86% -97% recognition rate on a variety of poses and variations in angles between 0 °- 22.5 °. The variation of illuminance measured using a lux meter can result in 90% -100% recognition rate for the category of at least dim lighting levels (above 10 lux).</p>


Author(s):  
D.Manasa ◽  
N.Ramya Sri ◽  
Sk.Naveed ◽  
N.Ramya

Attendance of students in a large classroom is hard to be handled by the traditional system, as it is time-consuming and has a high probability of error during the process of inputting data into the computer. This paper proposed automated attendance marking system using face recognition technique. The system will help to find the positive and negative of the face and Eigen face algorithm for face recognition by using python programming and OpenCV library. The proposed method using PCA to resolve the problems such as lightning of the images, and the direction of the student faces. The attendance of the student was updated to the Excel sheet after student's face has been recognized. KEYWORDS: PCA, Facial Recognition, ERP, Classroom, Attendance


2014 ◽  
Vol 971-973 ◽  
pp. 1710-1713
Author(s):  
Wen Huan Wu ◽  
Ying Jun Zhao ◽  
Yong Fei Che

Face detection is the key point in automatic face recognition system. This paper introduces the face detection algorithm with a cascade of Adaboost classifiers and how to configure OpenCV in MCVS. Using OpenCV realized the face detection. And a detailed analysis of the face detection results is presented. Through experiment, we found that the method used in this article has a high accuracy rate and better real-time.


Now a days one of the critical factors that affects the recognition performance of any face recognition system is partial occlusion. The paper addresses face recognition in the presence of sunglasses and scarf occlusion. The face recognition approach that we proposed, detects the face region that is not occluded and then uses this region to obtain the face recognition. To segment the occluded and non-occluded parts, adaptive Fuzzy C-Means Clustering is used and for recognition Minimum Cost Sub-Block Matching Distance(MCSBMD) are used. The input face image is divided in to number of sub blocks and each block is checked if occlusion present or not and only from non-occluded blocks MWLBP features are extracted and are used for classification. Experiment results shows our method is giving promising results when compared to the other conventional techniques.


Author(s):  
Dr.C K Gomathy ◽  
T. suneel ◽  
Y.Jeeevan Kumar Reddy

The Face recognition and image or video recognition are popular research topics in biometric technology. Real-time face recognition is an exciting field and a rapidly evolving issue. Key component analysis (PCA) may be a statistical technique collectively called correlational analysis . The goal of PCA is to scale back the massive amount of knowledge storage to the dimensions of the functional space required to render the face recognition system. The wide one-dimensional pixel vector generated from the two-dimensional image of the face and therefore the basic elements of the spatial function are designed for face recognition using PCA. this is often the projection of your own space. Sufficient space is decided by the brand. specialise in the eigenvectors of the covariance matrix of the fingerprint image collection. i'm building a camera-based real-time face recognition system and installing an algorithm. Use OpenCV, Haar Cascade, Eigen face, Fisher Face, LBPH and Python for program development.


2012 ◽  
Vol 241-244 ◽  
pp. 1705-1709
Author(s):  
Ching Tang Hsieh ◽  
Chia Shing Hu

In this paper, a robust and efficient face recognition system based on luminance distribution by using maximum likelihood estimation is proposed. The distribution of luminance components of the face region is acquired and applied to maximum likelihood test for face matching. The experimental results showed that the proposed method has a high recognition rate and requires less computation time.


Author(s):  
Daniel Riccio ◽  
Andrea Casanova ◽  
Gianni Fenu

Face recognition in real world applications is a very difficult task because of image misalignments, pose and illumination variations, or occlusions. Many researchers in this field have investigated both face representation and classification techniques able to deal with these drawbacks. However, none of them is free from limitations. Early proposed algorithms were generally holistic, in the sense they consider the face object as a whole. Recently, challenging benchmarks demonstrated that they are not adequate to be applied in unconstrained environments, despite of their good performances in more controlled conditions. Therefore, the researchers' attention is now turning on local features that have been demonstrated to be more robust to a large set of non-monotonic distortions. Nevertheless, though local operators partially overcome some drawbacks, they are still opening new questions (e.g., Which criteria should be used to select the most representative features?). This is the reason why, among all the others, hybrid approaches are showing a high potential in terms of recognition accuracy when applied in uncontrolled settings, as they integrate complementary information from both local and global features. This chapter explores local, global, and hybrid approaches.


Author(s):  
Peter A. C. Smith

The audit profession has been facing reassessment and repositioning for the past decade. Enquiry has been an integral part of an audit; however, its reliability as a source of audit evidence is questioned. To legitimize enquiry in the face of audit complexity and ensure sufficiency, relevance, and reliability, the introduction of Stafford Beer’s Viable System Model (VSM) into theory and practice has been recommended by a number of authors. In this paper, a variant on previous VSM-based audit work is introduced to perfect auditing assessment of accountability and compliance. This variant is termed the “VSM/NVA variant” and is applicable when the VSM model is in use for an audit. This variant is based on application of Network Visualization Analysis (NVA) to a VSM-modeled organization. Using NVA, “decision leaders” can be identified and their socio-technical relevance to VSM systems explored. This paper shows how the concepts of decision leaders and their networks can enrich and clarify practical applications of audit theory and practice. The approach provides an enhanced real-world understanding of how various VSM systems and network layers of an organization coalesce, and how they relate to the aims of the VSM model at micro and macro levels.


Sign in / Sign up

Export Citation Format

Share Document