scholarly journals Assistive Vision Technology using Deep Learning Techniques

Author(s):  
Dr. Neeta Verma

One of the most important functions of the human visual system is automatic captioning. Caption generation is one of the more interesting and focused areas of AI, with numerous challenges to overcome. If there is an application that automatically captions the scenes in which a person is present and converts the caption into a clear message, people will benefit from it in a variety of ways. In this, we offer a deep learning model that detects things or features in images automatically, produces descriptions for the images, and transforms the descriptions to audio for louder readout. The model uses pre-trained CNN and LSTM models to perform the task of extracting objects or features to get the captions. In our model, first task is to detect objects within the image using pre trained Mobilenet model of CNN (Convolutional Neural Networks) and therefore the other is to caption the pictures based on the detected objects by using LSTM (Long Short Term Memory) and convert caption into speech to read out louder to the person by using SpeechSynthesisUtterance interface of the Web Speech API. The interface of the model is developed using NodeJS as a backend for the web page. Caption generation entails a number of complex steps, including selecting the dataset, training the model, validating the model, creating pre-trained models to check the images, detecting the images, and finally generating captions.

2018 ◽  
Author(s):  
Andre Lamurias ◽  
Luka A. Clarke ◽  
Francisco M. Couto

AbstractRecent studies have proposed deep learning techniques, namely recurrent neural networks, to improve biomedical text mining tasks. However, these techniques rarely take advantage of existing domain-specific resources, such as ontologies. In Life and Health Sciences there is a vast and valuable set of such resources publicly available, which are continuously being updated. Biomedical ontologies are nowadays a mainstream approach to formalize existing knowledge about entities, such as genes, chemicals, phenotypes, and disorders. These resources contain supplementary information that may not be yet encoded in training data, particularly in domains with limited labeled data.We propose a new model, BO-LSTM, that takes advantage of domain-specific ontologies, by representing each entity as the sequence of its ancestors in the ontology. We implemented BO-LSTM as a recurrent neural network with long short-term memory units and using an open biomedical ontology, which in our case-study was Chemical Entities of Biological Interest (ChEBI). We assessed the performance of BO-LSTM on detecting and classifying drug-drug interactions in a publicly available corpus from an international challenge, composed of 792 drug descriptions and 233 scientific abstracts. By using the domain-specific ontology in addition to word embeddings and WordNet, BO-LSTM improved both the F1-score of the detection and classification of drug-drug interactions, particularly in a document set with a limited number of annotations. Our findings demonstrate that besides the high performance of current deep learning techniques, domain-specific ontologies can still be useful to mitigate the lack of labeled data.Author summaryA high quantity of biomedical information is only available in documents such as scientific articles and patents. Due to the rate at which new documents are produced, we need automatic methods to extract useful information from them. Text mining is a subfield of information retrieval which aims at extracting relevant information from text. Scientific literature is a challenge to text mining because of the complexity and specificity of the topics approached. In recent years, deep learning has obtained promising results in various text mining tasks by exploring large datasets. On the other hand, ontologies provide a detailed and sound representation of a domain and have been developed to diverse biomedical domains. We propose a model that combines deep learning algorithms with biomedical ontologies to identify relations between concepts in text. We demonstrate the potential of this model to extract drug-drug interactions from abstracts and drug descriptions. This model can be applied to other biomedical domains using an annotated corpus of documents and an ontology related to that domain to train a new classifier.


10.6036/10007 ◽  
2021 ◽  
Vol 96 (5) ◽  
pp. 528-533
Author(s):  
XAVIER LARRIVA NOVO ◽  
MARIO VEGA BARBAS ◽  
VICTOR VILLAGRA ◽  
JULIO BERROCAL

Cybersecurity has stood out in recent years with the aim of protecting information systems. Different methods, techniques and tools have been used to make the most of the existing vulnerabilities in these systems. Therefore, it is essential to develop and improve new technologies, as well as intrusion detection systems that allow detecting possible threats. However, the use of these technologies requires highly qualified cybersecurity personnel to analyze the results and reduce the large number of false positives that these technologies presents in their results. Therefore, this generates the need to research and develop new high-performance cybersecurity systems that allow efficient analysis and resolution of these results. This research presents the application of machine learning techniques to classify real traffic, in order to identify possible attacks. The study has been carried out using machine learning tools applying deep learning algorithms such as multi-layer perceptron and long-short-term-memory. Additionally, this document presents a comparison between the results obtained by applying the aforementioned algorithms and algorithms that are not deep learning, such as: random forest and decision tree. Finally, the results obtained are presented, showing that the long-short-term-memory algorithm is the one that provides the best results in relation to precision and logarithmic loss.


2021 ◽  
Vol 4 (1) ◽  
pp. 121-128
Author(s):  
A Iorliam ◽  
S Agber ◽  
MP Dzungwe ◽  
DK Kwaghtyo ◽  
S Bum

Social media provides opportunities for individuals to anonymously communicate and express hateful feelings and opinions at the comfort of their rooms. This anonymity has become a shield for many individuals or groups who use social media to express deep hatred for other individuals or groups, tribes or race, religion, gender, as well as belief systems. In this study, a comparative analysis is performed using Long Short-Term Memory and Convolutional Neural Network deep learning techniques for Hate Speech classification. This analysis demonstrates that the Long Short-Term Memory classifier achieved an accuracy of 92.47%, while the Convolutional Neural Network classifier achieved an accuracy of 92.74%. These results showed that deep learning techniques can effectively classify hate speech from normal speech.


Author(s):  
Thang

In this research, we propose a method of human robot interactive intention prediction. The proposed algorithm makes use of a OpenPose library and a Long-short term memory deep learning neural network. The neural network observes the human posture in a time series, then predicts the human interactive intention. We train the deep neural network using dataset generated by us. The experimental results show that, our proposed method is able to predict the human robot interactive intention, providing 92% the accuracy on the testing set.


Author(s):  
Pablo F. Ordoñez-Ordoñez ◽  
Martha C. Suntaxi Sarango ◽  
Cristian Narváez ◽  
Maria del Cisne Ruilova Sánchez ◽  
Mario Enrique Cueva-Hurtado

2021 ◽  
Author(s):  
Mahdi Yousefzadeh Aghdam ◽  
Seyed Reza Kamel ◽  
Seyed Javad Mahdavi Chabok ◽  
maryam khairabadi

Abstract Air traffic management refers to the activities required for the efficient and safe management of the national air system (NAS) for each country. This concept has been widely assessed due to its complexity and sensitivity for the beneficiaries, including passengers, airlines, regulatory agencies, and other organizations. To date, various methods (e.g., statistical and fuzzy techniques) and data mining algorithms (e.g., neural network) have been used to solve the issues of air traffic management (ATM) and delay the minimization problems. However, each of these techniques has some disadvantages, such as overlooking the data, computational complexities, and uncertainty. The present study aimed to increase ATM efficiency using the deep learning approach. The main research objective was to propose a deep learning model with the application of a long short-term memory-based deep learning model in order to increase the predictive accuracy in short daily and long-term annual windows by enhancing deep learning (two-dimensional). In addition, the deep model output was transferred to the extreme learning machine fast learning deep neural machine in order to calculate the estimated time of arrival real-time based on other similar input data, including the NAS data, bureau of transportation statistics system, and automatic dependent surveillance-broadcast system. The final results indicated the increased accuracy of ATM compared to other studies.


Sign in / Sign up

Export Citation Format

Share Document